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Preface

“Quantum Mechanics” is the description of the behavior of matter and light in all its details
and, in particular, of the happenings on an atomic scale. Things on a very small scale behave
like nothing you have any direct experience about. They do not behave like waves, they do
not behave like particles, they do not behave like clouds, or billiard balls, or weights on
springs, or like anything you have ever seen.—Richard Feynman

This book has been written to serve as a text for an introductory graduate course;
much of the material can also be used for an advanced, undergraduate course. Its
precursor1 has been used many times in a 1-year, introductory, graduate course.

Throughout the text either theoretical developments have been motivated by
experimental observations or theory has been used to explain experimental data.
The authors have made a significant effort to make the material more easily
accessible by (a) providing systematic explanations, (b) presenting logical step-by-
step derivations, (c) imbedding solved examples in the text at appropriate places to
clarify the ongoing discussion, (d) summarizing key ideas at the end of each chapter,
and (e) providing an extensive set of problems at the end of each chapter.

Some chapters may be appropriate for courses in quantum chemistry since
many physical applications in this book have been chosen from molecular spectra
and molecular structure,2 which serves as a fertile ground for examples of non-
relativistic quantum physics.

The sections “Precession of a Spinning Particle in a Magnetic Field: The Inter-
pretation of the Schrödinger and Heisenberg Pictures” and “Magnetic Resonance”
can be used in a special topics course as an introduction to nuclear magnetic
resonance.

Complicated quantum systems can often be more profitably analyzed, not in
terms of their constituents, but instead in terms of more general substructures:
specifically, molecules can be analyzed in terms of rotations, oscillations, and

1A. Bohm, Quantum Mechanics: Foundations and Applications, Springer-Verlag, New York, 2nd

Edition (1986), 3rd Edition (1993), soft-cover printing (2001).
2G. Herzberg, Molecular Spectra and Molecular Structure, Van Nostrand, New York, 1939–1966.
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vi Preface

single-electron excitations,3 and nuclei can be described in terms of their collective
motions.4 It is remarkable that this way of understanding can also be extended to
relativistic systems where the hadron spectra can be analyzed in terms of relativistic
rotators and oscillators.5 This analysis of quantum physical systems in terms of
collective motions rather than constituents is also used here to analyze molecular
spectra and molecular structure in terms of rotational and vibrational motions.

The objective of this book is to present quantum mechanics in its general
form by stressing the operator approach. A major new development in physics
usually necessitates a corresponding development in mathematics. For example,
differential and integral calculus were developed for classical mechanics, and no one
today would teach an advanced course without using this mathematical language.
Although the mathematics of linear, scalar-product spaces and linear operators were
created and developed to fulfill the needs of quantum physics, quantum mechanics
is still often taught without using its mathematical language. By restricting much
of a course on quantum mechanics to differential equations and a discussion of
their solutions, students may initially find the material easier to grasp because
the mathematics is familiar. However, many quantum concepts are difficult to
present in this narrow mathematical language that emphasizes only one of the
many complementary aspects of quantum physics. There is much more to quantum
mechanics than the overemphasized, wave-particle dualism presented in terms of
differential equations, and there is no principle that a priori places position and
momentum at the forefront. Every observable needs to receive the emphasis that is
appropriate for the particular situation being considered.

The mathematics of quantum mechanics, which involves linear, scalar-product
spaces and algebras of linear operators, is discussed in Appendix. Rather than
treating the mathematics abstractly, each operation in a general, linear space is
motivated by first examining the corresponding operation in the familiar three-
dimensional vector space. Also, when the properties of scalar-product spaces are
discussed, each property is first shown to exist both for the scalar product in three-
dimensional vector space and for the scalar product expressed as an integral. The
emphasis is on providing an introduction to the mathematics required to perform
quantum calculations, not on providing mathematical justification (proofs). This
elementary mathematical tutorial has been written for the reader who has no prior
knowledge of the general mathematical structure of quantum mechanics. Thus the
reader who has some familiarity with the mathematics of linear operators in linear,
scalar-product spaces can skip the Appendix. If the reader then finds some aspect
of the mathematics in Chap. 1 or in later chapters unfamiliar, the Appendix can be
used as a reference.

The discussion of quantum mechanics begins with some basic postulates of
quantum mechanics that are formulated and made plausible by using the example of

3Ibid.
4A. Bohr, B. R. Mottelson, and J. Rainwater, 1975 Nobel Prize in Physics.
5A. Bohm, Y. Neeman, A. O. Barut et al. Dynamical Groups and Spectrum Generating Algebras,
World Scientific Publishing Co., 1988.
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the harmonic oscillator realized by the diatomic molecule. Further basic postulates
are introduced in later chapters when the scope of the theory is extended. These
basic postulates are not mathematical axioms from which all predictions of the
theory can be derived. Such an axiomatic approach does not appear to be possible in
physics. Instead, the basic postulates are a concise way of expressing the essence
of many experimental results and the successes of various theoretical ideas. In
Chap. 1 representations of the algebra of the harmonic oscillator are first determined.
The interpretation of experimental data from an energy loss experiment is used
to motivate the introduction of the statistical operator—with matrix elements that
form the “density matrix”—and to formulate the relationship between average
values measured in an experiment and expectation values calculated theoretically.
Radiative transitions between harmonic oscillator energy levels and the Einstein
coefficients are discussed.

Representations of the algebra of angular momentum are calculated in Chap. 2.
The algebra of angular momentum is enlarged by adding the position operator so
that the algebra can be used to describe rigid and non-rigid rotating molecules.
Theoretical predictions are compared with the experimental spectra of rotating
diatomic molecules.

The combination of quantum physical systems using direct-product spaces is
discussed in Chap. 3. The theory is used to describe a vibrating rotator, and the
theoretical predictions are then compared with data for a vibrating, rotating diatomic
molecule. The addition of angular momentum (Clebsch-Gordan coefficients) is
discussed. Tensor operators are introduced so that the Wigner-Eckart theorem can
be used to relate various experimental data.

The formalism of first- and second-order, non-degenerate perturbation theory and
first-order, degenerate perturbation theory is derived in Chap. 4. The basic ideas
associated with stationary perturbation are motivated by examining a rotator in a
uniform magnetic field. Perturbation theory is used to explain the Stark effect.

Time development is described in Chap. 5 using either the time-dependent
Schrödinger equation or Heisenberg’s equation of motion. The Schrödinger picture,
Heisenberg picture, and interaction picture are discussed. The precession of a
spinning particle in a magnetic field is described in both the Schrödinger and
Heisenberg pictures to help clarify the relationship between the two pictures.
Magnetic resonance is discussed in the Schrödinger picture. The Gibb’s distribution
and a magnetic resonance experiment are discussed.

Since a discussion of the experimental and theoretical developments that pre-
saged quantum mechanics is necessarily brief, in this book prior knowledge of
classical mechanics, some electromagnetic theory, and some atomic physics is
required. A basic knowledge of differential and integral calculus is assumed. Some
familiarity with matrices, vector algebra, and linear spaces would be helpful.

Austin, TX, USA Arno Bohm
Mexico City, Mexico Piotr Kielanowski
Columbus, OH, USA G. Bruce Mainland
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Chapter 1
Quantum Harmonic Oscillator

1.1 The Gate to Quantum Mechanics

The story of quantum physics began in 1900 when Max Planck discovered by the
thermodynamical methods the improvement of the Wien’s law of energy distribution
for blackbody radiation and then formulated the microscopic derivation of his
equation in terms of oscillators within the cavity of a blackbody. Planck assumed
that the energy of an oscillator of a given frequency ν has to be an integer multiple
of an energy element hν

E = nhν = nh̄ω . (1.1.1)

The angular frequency ω = 2πν and h̄ = h/2π where the constant h is Planck’s
constant and has the experimental value

h = 6.626× 10−34Js, h̄ = 1.055× 10−34Js . (1.1.2)

Planck’s assumption of discrete energies ran contrary to the ideas of classical
physics where energy is continuous. He made it as “an act of desperation” in
order to derive an energy distribution for blackbody radiation which agreed with
experiments. Planck’s assumption related to the oscillators lining the cavity of a
blackbody radiator, but it is not far fetched to conclude that the energy emitted by
such oscillators will also occur in amounts hν.

Still, 5 years elapsed before Planck’s constant h was used again when Einstein
(1905) explained the photoelectric effect by treating light as quanta with energy
E = hν . If electromagnetic radiation consists of particles, now called photons,
then these particles should possess momentum. Maxwell’s classical wave theory of
electromagnetic radiation leads to the result

p = E

c
, (1.1.3)

© Springer Nature B.V. 2019
A. Bohm et al., Quantum Physics, https://doi.org/10.1007/978-94-024-1760-9_1
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2 1 Quantum Harmonic Oscillator

where p and E are, respectively, the momentum and energy content in a given
volume of a radiation field and c is the speed of light. Equation (1.1.3) is also,
of course, just the usual relativistic equation for energy, E2 = p2c2 +m2c4, when
the particle’s rest mass m is zero. If a photon, as Planck and Einstein suggested, has
an energy given by (1.1.1), then from (1.1.3) its momentum is given by

p = hν

c
. (1.1.4)

Using the standard wave relationship c = λν, which expresses the speed c of the
wave in terms of its wavelength λ and frequency ν, (1.1.4) becomes

p = h

λ
. (1.1.5)

The “photon-electromagnetic wave” is an example of a physical system called an
elementary particle. (“Particle” is an unfortunate choice for a name since it leads
to an association with classical particles and the “photon-electromagnetic wave” is
neither a classical particle nor a classical wave. It would have been better if a new
name such as quanta had been coined.)

Since the seventeenth century two theories of the nature of light existed. Newton
(1663) proposed that light existed as “corpuscles”, or particles, and this came to
be known as his corpuscular theory of light. Later Huygens (1678) proposed an
alternate theory which considered light to be of a wave nature. At the time all
physical facts known about light could be explained satisfactorily by either theory.

Two-slit interference of light, which could only be explained by the wave picture,
was discovered by Thomas Young (1801). Newton’s theory was unable to explain
diffraction so the wave theory was generally accepted until the turn of the century.
However, the photoelectric effect first observed by Heinrich Hertz (1887), and
quantitatively established by P. Lenard (1902), could only be explained by viewing
light as particles. Thus, two-slit interference and the photoelectric effect confront
physicists with experimental results that cannot be simultaneously explained by
either the wave picture or the particle picture alone. A theory is required that
encompasses both the classical particle theory and the classical wave theory.

Later a similar dilemma arose concerning the wave and particle nature of the
electron. From electrolysis experiments it was suggested that electric charge occurs
only in discrete amounts. J.J. Thompson and J. Perrin (1897) showed that the
phenomenon of cathode rays (electrons) could be explained if they are assumed
to be a stream of particles, each having a definite mass and charge and obeying the
laws of classical mechanics. This was understood as establishing the existence of
the electron as a classical particle. The perception of the electron as a particle was
further strengthened when Millikan (1909) measured the charge of a single electron
and verified that charge in any region of space always comes in integer multiples
of the elementary unit of change e. Thus by 1920 the electron was accepted as a
particle because the particle picture described all known phenomena, whereas the
wave picture could not explain the discrete nature of charge.
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Physicists were then forced to question their acceptance of the electron as a
particle when electron diffraction was discovered by Davisson and Germer and by
G.P. Thompson (1927). These experiments could not be explained by the particle
picture of electrons. However, the results could be explained by the wave picture if
electrons with momentum p = mv have a wavelength λ given by

λ = h

p
. (1.1.6)

The above relationship is identical in form to (1.1.5); however, (1.1.5) describes light
while (1.1.6) describes electrons. Since λ = h/p both for light and for electrons, it
is reasonable to postulate that it is true for all objects. Defining the wave number k

by the relation

k = 2π

λ
, (1.1.7)

allows (1.1.6) to be written in the form

p = h

λ
= h̄k . (1.1.8)

Historically, before the experimental discovery of electron diffraction, Louis
de Broglie (pronounced de Broyle) (1924) conjectured, in analogy with the
wave-particle duality of light, that particles possess wave properties and that their
wavelength is given by (1.1.6). He saw the symmetry of nature and thought that
the wave-particle duality of light should be matched by the wave-particle duality of
electrons.

The Planck relation (1.1.1) and the de Broglie relation (1.1.8), namely

E = hν and p = h̄k , (1.1.9)

are justly considered the gateway to quantum theory.
In some experiments cathode rays exhibit both wave and particle properties:

cathode rays, which consist of individual electrons, exhibit wave properties when
they are scattered from a crystal surface, creating a diffraction pattern, or when they
pass through two slits to create a two-slit interference pattern. But after passing
through the slits, cathode rays exhibit particle properties when individual flashes
are observed as single electrons strike a luminescent screen.

Furthermore some experimental results can be described equally well using
either the particle or wave picture. For example, by examining the deflection of alpha
particles off of thin metal foils, Rutherford concluded that almost all of the mass of
an atom is concentrated in a small region. The formula that correctly predicts the
amount of deflection for the alpha particles can be derived using either the particle
picture or the wave picture. Also, the deflection of cathode rays in electromagnetic
fields can be explained using either picture.
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Both pictures have redundant structures, structures that cannot be observed in an
experiment. When an electron is viewed as a particle, it apparently has a trajectory.
But in attempting to determine the trajectory, for example by using light, the
trajectory of the electron is changed when it is collides with a photon. The trajectory
is unobservable since, in the process of observing it, the trajectory is changed.
Similarly, when a beam of electrons is described as a wave, the matter density is
treated as if it were homogeneous although the beam is comprised of individual
electrons.

At the advent of quantum mechanics, light was thought to be a wave and electrons
were thought to be particles only as a consequence of which experiments had been
done by that time. If the photoelectric effect had been discovered before two-slit
interference of light was observed, light would have been classified as a particle.
Similarly, if electron diffraction had been discovered first, electrons would have
been classified as waves. It may seem that since cathode rays and light can be
described either as particles or as waves, the only function of a new theory is to
reveal when to use the particle description, when to use the wave description, and
when it does not matter. This, however, is not the case. Both for light and electrons,
neither the particle theory nor the wave theory completely describes the observed
behavior. A theory is needed that embraces the two. Quantum theory resolves this
apparent paradox and shows that there is much more than just waves and particles.
The question, “Are light and electrons waves or particles?” has been resolved, not
by deciding it, but by showing that it is not the right question to ask.

Atomic dynamics began with the work of Bohr (1913). From the Rydberg
formula it was known that the reciprocal of the wavelengths of light emitted and
absorbed by hydrogen atoms is given by the difference of two terms, each of which
depends on an integer. Consequently, discrete numbers (integers) play a role in
atomic physics. To these integers Bohr assigned a discrete set of states that he
believed were stationary orbits in which the laws of classical electrodynamics did
not apply so that the electron would not radiate away its energy, causing the collapse
of the atom. Thus the electron in the hydrogen atom could only be in one of a
discrete set of states. Each atomic state of the electron has its own specific value
of energy and orbital angular momentum and is called an eigenstate of energy
and orbital angular momentum. (“Eigen” is the German word for “own,” and an
eigenvalue is the characteristic value or proper value.) An atomic state is different
from a wave with a definite value of linear momentum p or a particle state with a
definite value of position x. The laws for observables in atomic states have a form
that is very different from laws in classical physics. Therefore, a guiding principle
is needed to conjecture these new relationships between atomic observables. This
guiding principle is the Bohr correspondence principle.

The correspondence principle is one of the more fruitful conceptual devices
employed in the development of a physical theory and played a major role in the
discovery of quantum mechanics. The principle asserts that structures of the new,
quantum theory have some correspondence to the structures of the old, classical
theory. Relations between quantum observables can be found (conjectured) by using
relations between the corresponding classical observables. Based on the observation
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that classical physics is correct for macroscopic objects, Bohr required that the new
quantum theory makes predictions that agree with classical physics in the limiting
cases of large masses or large orbits. From the Bohr model of the hydrogen atom the
radii of the stationary orbits are proportional to the square of the quantum number
n, so large radii correspond to large values of n. Therefore, the first part of the
correspondence principle was stated in the following form:

Correspondence Principle, Quantum Numbers: The predictions of quantum theory must
correspond to the predictions of classical physics in the limit of large quantum numbers.

Classically it can be shown for certain systems that transitions are possible, not
between any two states, but only between states that are related to each other in a
specific manner. Rules specifying which state may transform (decay) into another
are called selection rules. The second part of the correspondence principle concerns
selection rules:

Correspondence Principle, Selection Rules: A selection rule that is necessary to obtain
the correspondence in the classical limit (large n) also applies in the quantum limit,
(small n).

The correspondence principle will be used, both to find the observables for
a quantum physical system and even to give a name to the system. Bohr’s
correspondence principle has become a guiding principle in the search for new
theories in physics.

Atomic and molecular physics are conveniently described by a third picture that
differs from both the particle and wave pictures. The atomic-molecular picture is
best illustrated by considering electrons in atoms where neither the particle picture
nor the wave picture is adequate. Such electrons are not detected with counters and
do not undergo diffraction. Out of a plurality of states, electrons in atoms are in a
third kind of state that is neither a wave state nor a particle state. This third type of
state was of great importance historically in the discovery of quantum mechanics by
Heisenberg (1924) that represents a significant advance over Bohr’s semi-classical
treatment of the hydrogen atom. Heisenberg’s work provided a matrix formulation
of quantum mechanics that is one form of quantum theory as it now exists.

The particle, wave, and atomic-molecular pictures do have features in common,
and the primary purpose of this book is to discuss the underlying structure that
these three approaches share. Remaining at the present level, where only external
appearances are observed, it will not be possible to determine the universal structure
of quantum mechanics. Instead one must delve more deeply into the mathematics
of quantum mechanics and rid oneself of the notion that all observable quantities
are represented by numbers. At this new, deeper level the confusion and apparent
contradictions vanish. Reaching this deeper level is especially difficult because,
when initially studying quantum mechanics, an intuitive understanding does not
exist since the phenomena are not within every-day experience.



6 1 Quantum Harmonic Oscillator

1.2 Derivation of Energy Values and Transition Matrix
Elements of the Quantum Harmonic Oscillator

1.2.1 From the Classical to the Quantum Oscillator

It is no accident that there are many systems in classical physics that behave as if
they were harmonic oscillators. To understand why this is so, consider a particle
in the external, one-dimensional potential U(x) depicted in Fig. 1.1. Expanding the
potential in a Taylor series about the point of stable equilibrium x = xe,

U(x) = U(xe)+ dU(x)

dx

∣
∣
∣
x=xe

(x−xe)+ 1

2!
d2U(x)

dx2

∣
∣
∣
x=xe

(x−xe)
2+· · · . (1.2.1)

At a point of stable equilibrium xe, there is a relative minimum of the potential
so dU(x)

dx
is zero at x = xe . Therefore, except for the constant term U(xe) that

shifts all energy levels by the same amount U(xe), from (1.2.1) it follows that for
sufficiently small oscillations the potential energy is proportional to the square of
the displacement from equilibrium. Therefore any system near equilibrium acts as
if it were a harmonic oscillator.

Classically, a harmonic oscillator consists of two objects bound by an attractive
force proportional to the relative displacement of the objects. An example is a
physical system consisting of masses m(1) and m(2) connected by a spring with a

Position x

1 U ( )d
d 2

2

2!

x
x xex )(x xe

2

xe

P
o
te

n
ti

al
 E

n
er

g
y

Potential U (x)

Harmonic Oscillator Potential

U (xe)

Fig. 1.1 Potential U(x) and the corresponding approximate harmonic oscillator potential
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(2)

(2) (2)(1)(1)

(1)

mm

Fig. 1.2 The diatomic molecule as a harmonic oscillator

spring constant k and sliding on a level, frictionless surface. The classical harmonic
oscillator is an idealized model (the elastic limit of the spring is not exceeded, there
is no friction, etc.) with the characteristic property that it vibrates harmonically.

A quantum harmonic oscillator is a micro-physical system in nature with a
mathematical structure that is obtained from the mathematical structure of the
classical harmonic oscillator via the Bohr correspondence principle. There are many
such micro-physical systems. One example is the diatomic molecule, provided the
energy is not too great and there is no rotation. Rather than analyze a system such
as a diatomic molecule in terms of its many constituent particles, it is often much
easier to analyze the system in terms of how it moves as a whole—such as vibrate
or rotate. Motion of the system as a whole is called collective motion.

For small oscillations a non-rotating diatomic molecule can be described as if it
were a harmonic oscillator, which is the much simpler system depicted in Fig. 1.2.

Denote the positions of the nuclei with masses m(1) and m(2) by x(1) and x(2),
respectively, and let the spring have an equilibrium length xe . Assuming, as shown
in Fig. 1.2, that x(2) > x(1), the internuclear separation is given by x(2) − x(1), and
the distance the spring is stretched is x(2)−x(1)−xe. The potential energy associated
with the stretched spring is

potential energy = 1

2
k(x(2) − x(1) − xe)

2. (1.2.2)

The potential U(x(2) − x(1)) of a diatomic molecule and the approximate harmonic
potential k(x(2)− x(1)− xe)

2/2 are depicted in Fig. 1.3 on the following page. The
total classical energy EClassical

T is obtained by adding the kinetic energies of m(1)

and m(2) to the potential energy,

EClassical
T = 1

2
m(1)

(
dx(1)

dt

)2

+ 1

2
m(2)

(
dx(2)

dt

)2

+ 1

2
k(x(2)−x(1)−xe)

2. (1.2.3)

The expression for EClassical
T is greatly simplified by rewriting it in terms of the

center-of-mass coordinate X defined by

X = 1

m(1) +m(2)
(m(1)x(1) +m(2)x(2)), (1.2.4a)
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Fig. 1.3 Potential of a diatomic molecule and the corresponding approximate harmonic oscillator
potential

and a relative coordinate x defined by

x = x(2) − x(1) − xe. (1.2.4b)

In terms of these new variables, the expression for the total classical energy EClassical
T

becomes

EClassical
T = 1

2
(m(1) +m(2))

(
dX

dt

)2

+ 1

2
μ

(
dx

dt

)2

+ 1

2
kx2, (1.2.5)

where μ is the reduced mass,

μ = m(1)m(2)

m(1) +m(2)
. (1.2.6)

The first term in (1.2.5) is the kinetic energy associated with the motion of the
center of mass. Since there is no potential energy term involving X, the center of
mass moves as if it were a free particle with a mass m(1)+m(2). The second and third
terms depend on the relative coordinate x. The relative motion of the two particles
is the same as that of a single particle with mass μ moving in an external potential
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kx2/2. Thus the classical energy EClassical associated with the relative motion is

EClassical = 1

2
μ

(
dx

dt

)2

+ 1

2
kx2. (1.2.7)

The relative momentum p is given by

p = μ
dx

dt
. (1.2.8)

Ignoring the motion of the center of mass, a classical harmonic oscillator is defined
as a system with potential energy proportional to the square of the distance from its
equilibrium position or as a system with total energy

EClassical = p2

2μ
+ 1

2
kx2. (1.2.9)

Although the potential depicted in Fig. 1.3 on the preceding page results from
the interaction of all the electrons and protons in the diatomic molecule, from the
discussion following (1.2.1) it follows that for a non-rotating diatomic molecule
undergoing small oscillations, the energy levels can be calculated from the much
simpler picture in Fig. 1.2 on page 7, which is that of a diatomic molecule consisting
of two nuclei with respective masses m(1) and m(2) bound by an elastic force.

According to the quantization rules, the transition from classical to quantum
physics is made by replacing classical quantities such as the position x and
momentum p by the corresponding quantum mechanical operators Q and P ,
respectively.1 The quantum energy operator, the Hamiltonian H , is then obtained
from the classical formula for the energy (1.2.9) by making the replacements
Eclassical → H , x → Q and p → P . As a consequence, the energy operator
for the quantum harmonic oscillator is conjectured to be given by the Hamiltonian

H = P 2

2μ
+ 1

2
kQ2. (1.2.10)

1The basic mathematical notion of quantum mechanics is that of the Hilbert space, where the
self-adjoint operators are identified with observables and the vectors of the Hilbert space are
identified with the states of the physical system. In this chapter the mathematical notions of
quantum mechanics are introduced gradually in relation to the discussed physical concepts. A
systematic, elementary explanation of mathematical ideas of quantum mechanics is discussed in
Appendix, page 313. Additional, more complete discussion of precise mathematical formulation
of quantum mechanical concepts can be found in the references: A. Bohm, The Rigged Hilbert
Space and Quantum Mechanics, Lecture Notes in Physics, 78 (1978), Springer-Verlag, Berlin,
Heidelberg, New York and A. Bohm and M. Gadella, Dirac Kets, Gamow Vectors, and Gel’fand
Triplets, Lecture Notes in Physics, 348 (1989), Springer-Verlag, Berlin, Heidelberg, New York.
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The operators P and Q are postulated to satisfy the Heisenberg commutation
relations

[Q,P ] ≡ QP − PQ = ih̄1 , [P,P ] = [Q,Q] = 0 , (1.2.11)

where the operator 1 is the unit operator and h̄ = h/2π , where h is Planck’s constant
(see Eq. (1.1.2)). The constants μ and k are system constants, and their meanings
follow from correspondence with the classical system of (1.2.9).

Such a classical system performs oscillations with an angular frequency

ω =
√

k

μ
. (1.2.12)

Using (1.2.12) to express k in terms of ω, the quantum system, (1.2.13) can be
written as

H = P 2

2μ
+ μω2

2
Q2 . (1.2.13)

In the classical case the energy EClassical, the momentum p, and the position x are
real numbers whereas in the quantum-mechanical case the quantities are represented
by the self-adjoint2 operators H , P , and Q, respectively. The constants μ and ω are
characteristic of the particular physical system.

1.2.2 Finding the Mathematical Properties of the Operators
P , Q, and H

It is easier to perform algebraic manipulations using operators that are dimen-
sionless. To construct the dimensionless operators for the harmonic oscillator, the
operators, the available constants, and the dimensions of each are listed in Table 1.1.
Note that since ω = √k/μ, only two of the three constants μ, ω and k are listed. The
dimensionless operators that can be constructed from the position operator Q, the
momentum operator P , and the Hamiltonian (energy operator) H are, respectively,

√
μω

h̄
Q ,

1√
μωh̄

P ,
1

h̄ω
H . (1.2.14)

2To be precise, these operators usually denote essentially self-adjoint operators since they are
defined as continuous operators in a dense subspace Φ of the Hilbert space H . Later in this
section the difference between H and Φ will be discussed briefly, but in the remainder of the text,
the distinction between H and its “physical” subspace Φ will not be emphasized.
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Table 1.1 The operators and
constants for the quantum,
harmonic oscillator and the
dimensions of each

Operator Dimension Constant Dimension

Q Length μ Mass
P mass× length

time
ω

1

time
H mass× length2

time2
h̄

mass× length2

time

It is now a simple matter to express the “dimensionless Hamiltonian” in terms of
the “dimensionless position operator” and the “dimensionless momentum operator”:

1

h̄ω
H = 1

h̄ω

(
P 2

2μ
+ k2

2
Q2

)

= 1

2

(√
μω

h̄
Q

)2

+ 1

2

(
P√
μωh̄

)2

. (1.2.15)

In going from the first to the second equality in (1.2.15), the order of the terms has
been reversed and the relationship k = μω2 has been used. To simplify the algebraic
manipulations, the “dimensionless Hamiltonian” H/(h̄ω) is factored by writing it
in terms of new operators a and a† that are defined in terms of the dimensionless
position and momentum operators given in (1.2.15):

a ≡ 1√
2

(√
μω

h̄
Q+ i√

μωh̄
P

)

, (1.2.16a)

a† ≡ 1√
2

(√
μω

h̄
Q− i√

μωh̄
P

)

. (1.2.16b)

Algebraic manipulations of (1.2.16) yield

a†a = μω

2h̄
Q2 + 1

2μωh̄
P 2 − i

2h̄
(PQ −QP) = 1

h̄ω
H − i

2h̄
(PQ−QP) .

(1.2.17)

Using the Heisenberg commutation relations (1.2.11), the above equation can be
rewritten in the form (Problem 1.1),

a†a = 1

h̄ω
H − 1

2
1 ≡ N , (1.2.18)

or

H = h̄ω(N + 1

2
) . (1.2.19)

As will soon become apparent, rather than work with the operators H , P , and Q,
it is convenient instead to use the operators N , a, and a†. Using the Heisenberg
commutation relations (1.2.11), it is straightforward to calculate the commutator of
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a and a† (Problem 1.2)

[

a, a†
]

= aa† − a†a ≡ 1 . (1.2.20)

Because of (1.2.19), calculating all the eigenvalues of N will immediately yield all
the eigenvalues of H . It is not obvious that there are any eigenvectors of N (or of
H ).3 Here only those representations are considered for which there exists at least
one eigenvector |λ〉. This means that an eigenvector |λ〉 is assumed to exist that
satisfies

N |λ〉 = λ|λ〉 . (1.2.21)

As a result of (1.2.19), the eigenvector |λ〉 is also an eigenvector of H with an
eigenvalue h̄ω(λ + 1/2),

H |λ〉 = h̄ω(N + 1

2
)|λ〉 = h̄ω(λ+ 1

2
)|λ〉 . (1.2.22)

To indicate that |λ〉 is an eigenvector of both N and the energy H , |λ〉 can be
relabeled by the energy Eλ,

|λ〉 ≡ |Eλ〉 , Eλ = h̄ω

(

λ+ 1

2

)

. (1.2.23)

Equation (1.2.21) only determines |Eλ〉 up to multiplicative constant αλ ∈ C,4

where αλ can depend on λ: the vector φλ ≡ αλ|λ〉 is also an eigenvector of N

and H with the same eigenvalue because

Hφλ = Hαλ|λ〉 = αλH |λ〉 = αλEλ|λ〉 = Eλφλ . (1.2.24)

It is customary to work only with normalized eigenvectors so |λ〉 is chosen such that
〈λ|λ〉 = 1. Then the eigenvectors |λ〉 are determined up to an arbitrary phase factor
eiβλ where βλ is real. This phase factor will be chosen by convention.

Starting with the eigenvector |λ〉, additional eigenvectors of N or H are now
sought with the help of the relations (Problem 1.3),

Na − aN = [N, a] =
[

a†a, a
]

= a† [a, a]+
[

a†, a
]

a = −a , (1.2.25a)

[

N, a†
]

=
[

a†a, a†
]

= a†
[

a, a†
]

+
[

a†, a†
]

= a† . (1.2.25b)

3In fact there are representations of the commutation relations (1.2.11) in the Hilbert space for
which there does not exist even one eigenvector of N .
4αλ ∈ C means αλ is a complex number.
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The operators a and a† are first applied to the eigenvector |λ〉 of (1.2.21).
Using (1.2.25a),

Na|λ〉 = (aN − a)|λ〉 = (aλ− a)|λ〉 = (λ− 1) a|λ〉 . (1.2.26a)

Similarly, using (1.2.25b) and (1.2.21),

Na†|λ〉 = (a†N + a†)|λ〉 = (a†λ+ a†)|λ〉 = (λ+ 1) a†|λ〉 . (1.2.26b)

Equation (1.2.26a) reveals that the vector a|λ〉 is an eigenvector of N with an
eigenvalue λ − 1. That is, a|λ〉 ∼ |λ− 1〉 unless the vector a|λ〉 is zero. The vector
|λ〉 is an eigenvector of N with an eigenvalue λ, and a|λ〉 is an eigenvector of N with
an eigenvalue λ−1. This means that when the operator a acts on an eigenvector |λ〉,
it lowers the eigenvalue of N by one unit.

Similarly, from (1.2.26b), the vector a†|λ〉 is an eigenvector of N with an
eigenvalue λ + 1, a†|λ〉 ∼ |λ + 1〉, unless the vector a†|λ〉 is zero. Thus when
a† acts on an eigenvector of N , it increases or raises the eigenvalue of N by one
unit. Because a and a†, respectively, decrease and increase the eigenvalues λ of N

by 1, a† is called the raising operator, a is called the lowering operator, and either is
called a ladder operator.

The eigenvectors of the operator N are also eigenvectors of H , as can be seen
from (1.2.19). The operators a and a† are applied to the eigenvector |λ〉 an arbitrary
number of times. In this way all eigenvalues of N and the Hamiltonian H are found.
This task is accomplished by demonstrating the following:

1. The eigenvalues of N are equal to or greater than zero.
2. The smallest eigenvalue of N is zero.
3. The eigenvalues of N increase in integer steps.
4. There is no upper limit to the eigenvalues of N . This means that the space of

solutions for the harmonic oscillator Hamiltonian is infinite dimensional.

After establishing the above four statements, it follows that eigenvalues of N are
0, 1, 2, . . ..

Step #1 To show that λ satisfies the condition λ ≥ 0, the scalar product of (1.2.21)
is taken with |λ〉,

〈λ|N |λ〉 = λ〈λ|λ〉 = λ ‖λ〉‖2 . (1.2.27a)

Since N = a†a,

〈λ|N |λ〉 = 〈λ|a†a|λ〉 . (1.2.27b)

Using the definition of the adjoint operator (see page 321), the above equation
becomes

〈λ|N |λ〉 = (a|λ〉, a|λ〉) = ‖a|λ〉‖2 . (1.2.27c)
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Equating (1.2.27a) and (1.2.27c), the first result is obtained:

λ = ‖a|λ〉‖2

‖|λ〉‖2 ≥ 0 for all possible λ . (1.2.28)

The result λ ≥ 0 follows because the norm of any vector is non-negative.

Step #2 The smallest eigenvalue of N is now shown to be λ = 0 by considering
the vector a|λ〉. According to (1.2.26a)

Na|λ〉 = (λ− 1) a|λ〉 . (1.2.29)

There are two possibilities under which the above equation can be satisfied: Either
a|λ〉 = 0 or a|λ〉 is an eigenvector of N with an eigenvalue λ− 1. Suppose that the
latter is true. Neglecting for the moment the matter of normalization,

|λ− 1〉 ∼ a|λ〉 . (1.2.30)

Repeating the above calculation with |λ− 1〉,

|λ− 2〉 ∼ a|λ− 1〉 ∼ a2 |λ〉 . (1.2.31)

The vector |λ − 2〉 is either zero or an eigenvector of N with eigenvalue λ − 2.
Continuing in this way a sequence of vectors is obtained,

|λ− n′〉 ∼ (a)n
′ |Eλ〉; n′ = 0, 1, 2, . . . (1.2.32)

that are eigenvectors of N with eigenvalues λ−n′ provided none of the eigenvectors
an′ |λ〉 are zero. Since, according to (1.2.28), the eigenvalue of N is equal to
or greater than zero, this sequence of eigenvectors cannot continue indefinitely.
Consequently, there must exist a vector, denoted |l〉, that is transformed by a into
the zero vector 0,

a|l〉 = 0 , (1.2.33)

thus terminating the sequence. Applying the operator a† to this vector, the vector |l〉
is seen to be an eigenvector of N with eigenvalue 0 since

N |l〉 = a†a|l〉 = a†0 = 0 = 0|l〉 . (1.2.34)

The vector |l〉 = |0〉 is chosen to be normalized. If it initially is not normalized, it
will be multiplied by a number C0 such that the new |0〉 fulfills the normalization
condition

〈0|0〉 = 1 . (1.2.35)
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Step #3 Starting with the normalized eigenvector |0〉 of N , a† is successively
applied. Since, according to (1.2.26b), the eigenvalues of N increase in integer steps,
the following sequence of vectors,

|0〉 ,
|1〉 = c1a

†|0〉 ,
|2〉 = c2(a

†)2|0〉 ,
...

|n− 1〉 = cn−1(a
†)n−1|0〉 ,

|n〉 = cn(a
†)n|0〉 = a†cn(a

†)n−1|0〉 = cn

cn−1
a†|n− 1〉 ,

...

(1.2.36)

are eigenvectors of N with eigenvalues 0, 1, 2, 3, . . . In (1.2.36) the complex
numbers cn will be chosen below such that |n〉 is normalized, 〈n|n〉 = 1.

From (1.2.36) and (1.2.26b)

N |n〉 = cnNa†(a†)n−1|0〉 = cn

cn−1
Na†|n− 1〉 = n

cn

cn−1
a†|n− 1〉 = n|n〉 .

(1.2.37)

This means that all |n〉; n = 0, 1, 2, . . .; are eigenvectors of N with respective
eigenvalues n unless one of them a†|k〉 is the zero vector, thus terminating the
sequence (1.2.36).

Step #4 A proof by contradiction reveals that as n increases, the sequence (1.2.36)
never terminates: Suppose that |k〉 is the last eigenvector so that a†|k〉 = 0, implying
that

‖a†|k〉‖2 = 0 .

Then using (1.2.20), (1.2.18) and (1.2.21)

‖a†|k〉‖2 = (a†|k〉, a†|k〉) = (|k〉, aa†|k〉 = (|k〉, (a†a + 1)|k〉)
= (|k〉, (k + 1)|k〉) = (k + 1)‖|k〉‖2 = 0 .

But the above result is incorrect because (k + 1) and ‖|k〉‖ are different from zero.
Thus the assumption that the sequence (1.2.36) terminates leads to a contradiction.
As a consequence, there is an infinite set of vectors |n〉, n = 0, 1, 2, · · · . Because
each is an eigenvector of the self-adjoint operator H with a different eigenvalue,
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each eigenvector is orthogonal to all of the others (Problem 1.10),

〈n|m〉 = 0 for n �= m . (1.2.38)

According to (1.2.22),

H |n〉 = h̄ω(N + 1

2
)|n〉 = h̄ω(n+ 1

2
)|n〉 . (1.2.39)

Therefore, the set of energy eigenvalues of the harmonic oscillator, called the energy
spectrum, is

En = h̄ω

(

n+ 1

2

)

, n = 0, 1, . . . , (1.2.40)

as shown in Fig. 1.4. It never terminates.

It is useful and customary to work with eigenvectors of the energy opera-
tor (1.2.36) that are normalized. The coefficients cn ∈ C in (1.2.36) are chosen
so that

〈n|m〉 = δnm =
{

1 if n = m ,

0 if n �= m .
(1.2.41)

The complex constants cn are calculated beginning with an equation that follows
from (1.2.36),

1 = ‖|n〉‖2 = (cn (a†)n|0〉, cn (a†)n|0〉 = ((a†)n|0〉, (a†)n|0〉|cn|2 . (1.2.42)

But from (1.2.36),

((a†)n|0〉, (a†)n|0〉 = 1

|cn−1|2 (a†|n− 1〉, a†|n− 1〉) . (1.2.43)

Fig. 1.4 Energy-level
diagram of the harmonic
oscillator

E3

E2

ΔE = hw
E1

E0

Q

Q
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Substituting the above result into (1.2.42), the following formula is immediately
obtained:

1 = |cn|2
|cn−1|2 (|n− 1〉, aa†|n− 1〉 . (1.2.44)

Using the commutation relations (1.2.20),

1 = |cn|2
|cn−1|2 (|n− 1〉, (a†a + 1)|n− 1〉 = |cn|2

|cn−1|2 (|n− 1〉, (N + 1)|n− 1〉

= n
|cn|2

cn−1|2 (|n− 1〉, |n− 1〉 = n
|cn|2
|cn−1|2 ; (1.2.45)

Hence cn must be chosen so that

n|cn|2 = |cn−1|2 . (1.2.46)

Since |0〉 is normalized by (1.2.35), c0 = 1, and one solution of (1.2.46) is

cn =
√

1

n! . (1.2.47)

There are other solutions of (1.2.46) that differ from (1.2.47) by a phase factor. In
fact, the most general solution is cn = 1√

n!e
iαn , where αn is a real constant that can

depend on n. It is customary, though not necessary, to choose eigenvectors of H

with relative phases that are all zero as the basis system for the space of physical
states Φ of the harmonic oscillator. With this choice,

|n〉 = 1√
n! (a

†)n|0〉 . (1.2.48)

The action of a and a† on |n〉 is easily calculated:

a|n〉 = 1√
n!a(a†)n|0〉 = 1√

n! (a
†a + 1)(a†)n−1|0〉

= 1√
n! (N + 1)

√

(n− 1)!|n− 1〉 = 1√
n! (n− 1+ 1)

√

(n− 1)!|n− 1〉

=
√

n√
n

√
n√

(n− 1)!
√

(n− 1)!|n− 1〉 = √n|n− 1〉 . (1.2.49)

Similarly (Problem 1.11),

a†|n〉 = √n+ 1|n+ 1〉 . (1.2.50)
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From (1.2.16) the operators Q and P can be expressed in terms of a and a†,

Q =
√

h̄

2μω
(a† + a) , P = i

√

μωh̄

2
(a† − a) . (1.2.51)

Example 1.2.1 The operators Q, P and a, a† (1.2.16) are defined in the abstract
vector space, but they can also be defined in the vector space consisting of complex
functions ψ(x), which are square integrable

∫ |ψ(x)|2dx < ∞. In such a space the
action of Q and P on ψ(x) is defined

Qψ(x) = xψ(x), Pψ(x) = h̄

i

∂ψ(x)

∂x
.

Determine functions ψi(x), i = 0, 1, 2, which correspond to the energy eigenvec-
tors |i〉 (1.2.48) of the harmonic oscillator.

Solution The vector |0〉 fulfills the condition (1.2.33) a|0〉 = 0, so ψ0(x) fulfills the
equation

0 = aψ0(x) = 1√
2

(√
μω

h̄
Qψ0(x)+ i√

μωh̄
Pψ0(x)

)

= 1√
2

(√
μω

h̄
xψ0(x)+ h̄√

μωh̄

∂ψ0(x)

∂x

)

⇒ dψ0(x)

dx
= −μω

h̄
xψ0(x).

The solution of the preceding equation for ψ0(x) is

ψ0(x) = Ne−
μωx2

2h̄ , N is the normalization factor.

The normalization factor N is determined from the condition
∫ +∞
−∞ |ψ0(x)|2 dx = 1

and is equal

N = 4
√

μω

πh̄
⇒ ψ0(x) = 4

√
μω

πh̄
e−

μωx2

2h̄ .

From Eq. (1.2.48) we have |1〉 = a†|0〉, so ψ1(x) is equal

ψ1(x) = a†ψ0(x) = 1√
2

(√
μω

h̄
Qψ0(x)− i√

μωh̄
Pψ0(x)

)

= 1√
2

(√
μω

h̄
xψ0(x)− h̄√

μωh̄

dψ0(x)

dx

)

=
4
√

4(μω)3

πh̄3 xe−
μωx2

2h̄
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From the relation |2〉 = 1√
2! (a

†)2|0〉 = 1√
2!a

†|1〉 one obtains the function ψ2(x)

ψ2(x) = 1

2
√

2

4
√

μω

πh̄

(
μω

h̄
x2 − 1

)

e−
μωx2

2h̄ .

In the general case the function ψn(x) corresponding to the eigenvector |n〉 is equal

ψn(x) = 1√
2nn!

4
√

μω

πh̄
Hn

(√
μω

h̄
x

)

e−
μωx2

2h̄ ,

where Hn(z) are the n-th order Hermite polynomial of a variable z.

Using (1.2.49)–(1.2.51), it is possible to obtain the matrix element of any power
of Q or P between any two energy eigenstates. For example, using the notation
|n〉 ≡ |En〉 one obtains

〈En|Q|Em〉 = 〈En|
√

h̄

2μω
(a† + a)|Em〉

=
√

h̄

2μω

[√
m+ 1〈En|Em+1〉 + √m〈En|Em−1〉

]

=
√

h̄

2μω

[√
m+ 1 δn,m+1 +√mδn,m−1

]

. (1.2.52)

Two of the non-zero matrix elements of the operator Q are shown by the arrows in
Fig. 1.4 on page 16, leading to emission or absorption of dipole radiation.

On=2 → On=1 + γ, γ +On=0 → On=1,

where On represents an oscillator with quantum number n, and γ denotes a photon
with energy Eγ = hν = h̄ω.

Placing the matrix elements in a square array,

〈En|Q|Em〉 =
√

h̄

2μω

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0
√

1 0 0 . . .√
1 0

√
2 0 . . .

0
√

2 0
√

3 . . .

0 0
√

3 0 . . .
...

...
...

...
. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎠

. (1.2.53)
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Similarly, the matrix of the momentum operator P in the basis |En〉 is

〈En|P |Em〉 = i

√

μωh̄

2

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 −√1 0 0 . . .√
1 0 −√2 0 . . .

0
√

2 0 −√3 . . .

0 0
√

3 0 . . .
...

...
...

...
. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎠

. (1.2.54)

As mentioned previously, even after the eigenvectors |En〉 are normalized and
fulfill (1.2.41), they are determined only up to a factor of modulus 1 that is called
a phase factor and usually written as eiϕ with real “phase angle” ϕ. Since from
H |En〉 = En |En〉 it follows that H(eiϕ|En〉) = En(e

iϕ |En〉), there is not a
single, normalized eigenvector |En〉 satisfying H |En〉 = En |En〉 but instead a one-
dimensional subspace, denoted hn, of eigenvectors with eigenvalue En

hn =
{

φn

∣
∣
∣φn = eiϕ |En〉, 0 ≤ ϕ < 2π

}

for every n = 0, 1, . . . . (1.2.55)

These subspaces are orthogonal to each other, written hn ⊥ hm for n �= m, which
means for any |En〉 ∈ hn and |Em〉 ∈ hm it follows that 〈Em|En〉 = 0.

The set of all linear combinations of |En〉 with components an = 〈En|φ〉 =
(|En〉, |φ〉) that fulfill

∑ |an|2 < ∞ is the Hilbert space (space of square summable
sequences)

H =
{

φ|φ =
∞
∑

n=0

an|En〉 with an ∈ C and
∞
∑

n=0

|an|2 = (φ, φ) < ∞
}

. (1.2.56)

The projection operators5 Λm = |Em〉〈Em| on the subspaces hm possess the
properties

Λmφ =
∞
∑

n=0

an Λm |En〉 = am|Em〉 , (1.2.57)

or

Λmφn =
{

φn if m = n ,

0 if m �= n .
(1.2.58)

The projection operators are also written

Λn = |φn〉〈φn| = eiϕ|En〉〈En|e−iϕ = |En〉〈En| . (1.2.59)

5A selfadjoint operator with the property Λ2 = Λ is called a projection operator.
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The energy operator H can be expressed in terms of the projection operators Λn,

H =
∞∑

0

EnΛn =
∞∑

0

En |En〉〈En| , (1.2.60)

which is called the spectral representation of the operator H since the set of
eigenvalues En is called the spectrum of H .

The subspace hn is, therefore,

hn = {|En〉〈En|φ〉 , φ ∈H } , (1.2.61)

which is the set of all vectors – normalized or not – that are eigenvectors of H

with eigenvalue En; hn is called the eigenspace of H , or the energy eigenspace,
corresponding to the eigenvalue En.

Instead of the space H , the Schwartz space Φ can be considered where

Φ =
{

φ|φ =
∞
∑

n=0

an|En〉, an ∈ C,

∞
∑

n=0

E
p
n |an|2 ≡ 〈φ|Hp|φ〉 < ∞, ∀ p = 0, 1, 2 . . .

}

.

(1.2.62)

(the symbol ∀ means “for all”). In H , (φ, φ) < ∞ and in Φ, 〈φ|Hp|φ〉 < ∞.
Thus while the space Φ is still an infinite-dimensional space, it is “much smaller”
than H ,

Φ ⊂H , (1.2.63)

because the condition on φ ∈ Φ is more restrictive than for φ ∈ H . For vectors
with a finite number of components, φ(N) = ∑N

n=0 an|En〉, this does not make a
difference provided all the an are finite. But for vectors φ with an infinite number of
components an = 〈En|φ〉 �= 0, n = 1, 2, . . . ,∞, the spaces in (1.2.56) and (1.2.62)
are very different.

The oscillator Hamiltonian (1.2.10), with k/μ = constant, provides an adequate
description in a limited energy range. Since vibrating diatomic molecules are only
approximately harmonic oscillators described by the Hamiltonian given in (1.2.10),
only a finite number of the energy eigenstates |En〉 are of physical importance.
Consequently, the question of whether the space Φ of (1.2.62) or the Hilbert spaces
H of (1.2.56) is the correct space of physical states cannot be decided by the
oscillator model.

In higher energy ranges, when interactions with other quantum systems and
scattering and decay become important, this simple harmonic oscillator model has
to be modified. There is some evidence that spaces similar to Φ are better suited to
describe observations than Hilbert spaces H of (1.2.56). The idealization that is
chosen here is the Schwartz space Φ because it is the Schwartz space in which all
the observables of the harmonic oscillator are represented by continuous operators
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defined in all of Φ.6 This is not the case for the Hilbert space H since the operators
P and Q that fulfill the fundamental commutation relations (1.2.11) cannot be
represented by continuous, Hilbert-space operators defined everywhere in H . This
means that in H the observables P and Q (and many others) cannot form an algebra
of observables. That is, the operators cannot be multiplied and added in all of H .

The space of physical states is thus postulated to be a direct sum of one-
dimensional energy eigenspaces hn with vectors φ that fulfill (1.2.62). It is denoted

Φ =
∑

⊕hn . (1.2.64)

The quantum harmonic oscillator has a lowest energy value E0 = h̄ω/2, known
as the zero-point energy. This feature, particular to quantum mechanics, is to be
contrasted with the classical convention that the minimum energy of the oscillator
is zero. In more complicated molecules that can vibrate with two characteristic
frequencies ω and ω′, the effect of the zero-point energy can actually be observed
when the molecules make a transition from a state with zero-point energy h̄ω′/2 to
a state with a zero-point energy h̄ω/2.

As shown in Fig. 1.4 on page 16, equidistant energy levels En, separated by an
amount h̄ω, are predicted for the harmonic oscillator. The energy En is associated
with a state described by Λn = |En〉〈En| or by the one-dimensional subspace hn or
by the “ray” φn = eiϕ|En〉 or by the vector |En〉 up to a phase.

According to (1.2.52), the position operator Q transforms between states of
neighboring energy levels,

↗ hn+1

Q : hn (1.2.65)

↘ hn+1

Radiative dipole transitions between neighboring energy levels that involve the
absorption of a photon, On+γ → On+1, or emission of a photon, On → On−1+γ ,
by the oscillator are caused by the position operator Q. The electric dipole operator
of a harmonic oscillator is qQ, where q is a charge characteristic of the particular
diatomic molecule. As shall be explained later, the probability of a dipole transition
from the state |Em〉 to the states |En〉 is proportional to |〈En|Q|Em〉|2 and is,
according to (1.2.52), equal to zero except between neighboring energy levels,
n − m = ±1. Thus energy can only be emitted in amounts of h̄ω, where ω is the
angular frequency ω = √k/μ of the oscillator with spring constant k and reduced
mass μ. Similarly, the energy is also absorbed only in units of h̄ω. There is only one

6A. Bohm, The Rigged Hilbert Space and Quantum Mechanics, Lecture Notes in Physics, 78
(1978), Springer-Verlag, Berlin, Heidelberg, New York.



1.2 Energies and Transition Matrix Elements 23

spectral line for the harmonically oscillating diatomic molecule with frequency

νnm = |En − En±1|
h

= |En − En±1|
2πh̄

= ω

2π
|n+ 1

2
− (n± 1+ 1

2
)| = ω

2π
,

(1.2.66)

where m = n± 1.
The formula hν = ΔE was Planck’s original hypothesis that opened the gate

to quantum mechanics. The frequency ν of the blackbody radiation is given by the
frequency ν = ω/(2π) = √

k/μ/(2π) of the oscillators in the wall of Planck’s
black body.

In addition to the frequency ν = ω/(2π) = √k/μ/(2π) predicted by (1.2.66),
which results from transitions between neighboring energy levels, for the HCl
molecule radiation at lower intensities is also observed with frequencies that are
integer multiples m = 2, 3, 4, and 5 of this frequency,

ν0m = m
ω

2π
= m ν . (1.2.67)

These higher frequencies result from transitions between energy levels that are not
adjacent. The transitions for the HCl molecule are shown in Fig. 1.5. The presence
of transitions with n = 2, 3, 4, and 5 is an indication that the HCl molecule is
not precisely a harmonic oscillator defined by (1.2.10). The harmonic oscillator
defined by (1.2.10) is just the benchmark for understanding the vibrating molecule:
the nature of the vibrating molecule is understood both by its agreement with the
harmonic oscillator model and by its deviations from the predictions of the harmonic
oscillator model. However, since the intensities of transitions with m > 1 rapidly
decrease, the harmonic oscillator model already provides a very good understanding
in the energy regime E ≈ 0.5 eV.

5000 10000 v(cm–1)

n = 2

n = 1

n = 3 n = 4 n = 5

0

Fig. 1.5 Coarse structure of the infrared spectrum of the diatomic molecule HCl. The intensity
actually decreases five times faster than indicated by the height of the vertical lines. Herzberg
(1966), vol. 1
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In the present section the energy levels of the harmonic oscillator have been
determined and the transitions between these energy levels have been discussed.
In Sect. 1.4 the scattering of electrons by quantum harmonic oscillators will be used
to introduce the fundamental notions of quantum mechanics: states and observables.

1.3 Pure States, Mixtures and Quantum Mechanical
Probabilities and Transition Rates

1.3.1 Introduction

From the Hamiltonian (1.2.10), the commutation relations (1.2.11) and the assump-
tion that there is at least one energy eigenvector, it was possible to derive the energy
spectrum of the harmonic oscillator. The spectrum consists of a set of discrete,
equally-spaced energy eigenvalues as shown in Fig. 1.4 on page 16. The spacing
between adjacent energy levels is En+1 − En = h̄ω, where ω = √

k/μ is the
angular frequency with which the molecule vibrates, and the system constants k and
μ are the spring constant and reduced mass, respectively.

Physical quantum harmonic oscillators occur in nature in many different forms,
in particular as diatomic molecules such as O2, HCl, and CO. Each of these
oscillators has different values of the system constants k and μ, resulting in a
different value of angular frequency ω. But otherwise the Hamiltonian of each of the
vibrating diatomic molecules has the same form given by (1.2.10) leading to equal
spacing between energy levels. The commutation relations (1.2.11) are independent
of the particular physical system since they contain only the universal constant h̄.
Therefore, one expects to find many physical systems for which the energy levels
are equally spaced or approximately equally spaced as predicted by (1.2.40).

As is generally the case, models such as the oscillator or the harmonically
vibrating dumbbell are applicable only in a limited energy range. In lower energy
ranges ΔE < h̄ω, the CO molecule does not behave like a vibrator, but it can still
perform rotations so it behaves as a rotator. In the energy range 0.1 eV-1.0 eV the
harmonic oscillator provides a good model of the CO molecule: there are only small
deviations from a harmonic force, and the lower, adjacent energy levels are equally
spaced. In higher energy ranges the electronic structure of the atom becomes visible,
and the energy spectra have spacings more similar to atomic spectra.

Two different processes for observing the energy levels of the vibrating CO
molecule will now be discussed: energy-loss experiments and radiative transitions.
Each of the two processes provides an opportunity for measuring both the spacing
between energy levels and the probability of transition between two energy levels.
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Fig. 1.6 Energy levels of the CO molecule. Energy transitions are indicated by arrows

Transitions in energy-loss experiments result from the collision of an electron
beam with the oscillators; Intensities are not governed by the dipole matrix element
〈En′ |Q|En〉. As a result, scattering electrons off of CO molecules can lead to
transitions between various energy levels. This is shown in Fig. 1.6 by the arrows
from the ground state E0 to the seven excited levels E1, E2, . . . , E7. The discussion
of this experiment will also be used to introduce the fundamental concepts of
quantum mechanics: the quantum mechanical state, the observable, and the quantum
mechanical probabilities.

The radiative transitions, which will be discussed in Sect. 1.5, are predominantly
dipole transitions with the intensity proportional to the square of the magnitude
of matrix element of the position operator |〈En′ |Q|En〉|2; therefore, from (1.2.52)
transitions can occur only between neighboring energy levels as shown by the
arrows for absorption and emission in Fig. 1.6. The radiative dipole transitions due
to the absorption and emission of electromagnetic radiation of photons occur with
the energy Eν = 0.265 eV or with frequency

ν = |En − En±1|
2πh̄

= 0.265 eV

2π(6.58× 10−16 eV · s) = 6.41× 1013 s−1 , (1.3.1)

and are in the infrared region.
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1.3.2 Energy-Loss (Franck-Hertz) Experiments

In energy-loss experiments7 the energy is measured that is lost by an electron e in a
collision with an oscillator O0 in its ground state,

e +O0 −→ e′ +On n = 0, 1, 2, . . . , 7 . (1.3.2)

The electron with initial energy Ee collides with an oscillator in its ground state
that has energy E0. The oscillator is excited into a vibrational state On with energy
En, n = 0, 1, 2, . . ., and the electron has final energy Ee′ . Since energy is conserved
in the collision,

Ee + E0 = Ee′ + En . (1.3.3)

The energy Ee−Ee′ lost by the electron during the collision is, according to (1.2.40),
predicted to be a multiple n of h̄ω:

Ee − Ee′ = En − E0 = ΔEn = h̄ω

(

n+ 1

2

)

− h̄ω

(
1

2

)

= nh̄ω , (1.3.4)

ω =
√

k

μ
, n = 0, 1, 2, . . . .

It is possible to determine the spacing En − E0 between energy levels of the
oscillator and verify that the spacing between adjacent energy levels is equidistant
as predicted by (1.2.40). Figure 1.6 on the previous page shows the energy
levels (1.2.40) predicted for the vibrating CO molecule. Adjacent energy levels are
equidistant, and the spacing En+1 − En = h̄ω can be determined by measuring
Ee − Ee′ in an energy-loss experiment.

The schematic diagram for such an experiment is given in Fig. 1.7a. A beam
of electrons leaves a monochromator with energy in a very narrow energy range
centered around Ee. The electrons enter a collision chamber with a molecular beam
of CO molecules in the ground state On=0, which is an ensemble of CO molecules
kept at a low temperature so that the molecules are in their vibrational ground state
and moving in the vertical direction of Fig. 1.7b. Some of the electrons scatter into
an analyzer that focuses only electrons with an energy Ee′ onto the detector. In the
specific experiment described in Fig. 1.7 on the facing page, the energy resolution
is 0.06 eV. The energy Ee′ selected by the analyzer can be varied, allowing the
measurement of the intensity I (the electron current at the detector) of the electrons
as a function of the energy ΔE = Ee − Ee′ lost by the electron. According
to (1.3.4) the energy lost by the electron equals the energy ΔEn transferred to the
CO molecule.

7From G. J. Schultz, Phys. Rev. 135, A998 (1964), with permission.
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Fig. 1.7 (a) Schematic diagram of an energy-loss experiment. (b) Schematic diagram of a double
electrostatic analyzer. Electrons are emitted from the thoria-coated iridium filament. They then
pass between the cylindrical grids at an energy of about 2.05 eV and are accelerated into a
collision chamber where they are crossed with a molecular beam. Those electrons scattered into
the acceptance angle of the second electrostatic analyzer pass between the cylindrical grids at an
energy from 0 to approximately 2 eV. The electrons pass the exit slit into the second chamber and
impinge on an electron multiplier [from G.J. Schulz, Vibrational Excitation of N2, CO, and H2 by
Electron Impact, Phys. Rev. 135, A988, 1964, with permission]

The results observed in an actual experiment,8 performed with the apparatus
depicted schematically in Fig. 1.7, is shown in Fig. 1.8 on the following page. A
maximum intensity in the detected electron current in Fig. 1.7 occurs for an energy
loss ΔE0 = Ee − Ee′ = 0, implying that a major fraction of the electrons in the
current are scattered elastically and do not lose any energy. This is shown by the
first maximum in Fig. 1.8 on the following page where the relative intensity has
been rescaled by a factor of 1

3 . A second relative maximum of intensity occurs for
electrons that have lost energy ΔE1 � 0.265 eV, demonstrating that a portion of
the electrons with energy Ee do in fact transfer energy in the amount ΔE1 to the
CO molecules. The third peak occurs for an energy loss ΔE2 = 2E1, and so forth.

8The first experiment of this kind was performed by James Franck and Gustav Hertz; Verhandlung
Dtsch. Physikalischen Gesellschaft 16 457 (1914). The experiment discussed here is by Schulz, G.
J.; Phys. Rev. B5 A988 (1964).
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Fig. 1.8 Energy spectrum of electrons with an incident energy of 2.05 eV that are scattered from
CO [from G.J. Schulz, Vibrational Excitation of N2, CO, and H2 by Electron Impact, Phys. Rev.
135, A988, 1964, with permission]

Figure 1.8 reveals that the scattered electron current is comprised of electrons that
have transferred one of the eight discrete amounts of energy ΔE0,ΔE1, . . . ,ΔE7
to the CO molecules. After the collision these CO molecules are in the ground state
with energy E0 and in excited energy levels with energies E1, E2,. . . , E7.

From the experimental data9 it follows that the energy lost by electrons is
discrete. Thus it is possible to conclude that CO molecules cannot be excited to any
arbitrary energy. Only a discrete number of energy values En are possible, revealing
experimentally that the diatomic molecule CO has discrete, equally-spaced energy
levels En, as predicted by (1.2.40). The experimental data indicate that the
CO molecule is a harmonic oscillator in this energy range. The experimentally-
determined energy spectrum is represented by the energy level diagram in Fig. 1.6
on page 25.

9Multiple scattering of electrons and CO molecules is negligible because the intensity of the
electron current and the density of the CO molecules are sufficiently low.
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1.3.3 The State of the Ensemble of CO Molecules Participating
in the Energy-Loss Experiment

In the scattering process (1.3.2), the interaction between the electrons and the
molecule On=0 of the molecular beam leads to the following transitions:

Oo → On

⎧

⎪⎪⎨

⎪⎪⎩

n = 0 for elastic scattering

n = 1, 2, . . . , 7 for transitions to excited states as indicated

by arrows in Fig. 1.6 on page 25.

When the final energy of the oscillator is the same as its initial energy E0, the
collision is said to be elastic. When the final energy of the oscillator is En, n ≥ 1,
kinetic energy of an electron has been transferred to the oscillator, and the collision
is called inelastic.

The intensity of the transition from O0 to the various excited levels On can be
measured as function of the energy lost by the electron,

Energy loss = Ee − Ee′ ,

where Ee is the energy of the monochromator setting and Ee′ is the energy of the
analyzer setting in the experiment of Fig. 1.7 on page 27. As shown in Fig. 1.8
on the facing page, the intensity of the transitions measured by the detector—and
therefore the number of CO molecules that participated in these transitions—has a
set of 7 discrete peaks for which the energy loss takes the set of discrete values

Ee − Ee′ = En − E0, n = 0, n = 1, 2, . . . , 7.

For n = 0, the process (1.3.2) is an “elastic collision”, because

Ee + E0 = Ee′ + E0 ,

and there is no change in the CO molecule’s energy. For n > 0, the process (1.3.2)
is an “inelastic collision,”

Ee + E0 = Ee′ + En, n �= 0 ,

because part of the kinetic energy Ee − Ee′ has been “lost” to the intrinsic energy
En−E0 of the CO molecule.10 After a collision an electron has lost energy, and the

10The kinetic energy of the CO molecules moving in the perpendicular direction in the molecular
beam of Fig. 1.7 on page 27 is of a different order of magnitude because mCO � me.



30 1 Quantum Harmonic Oscillator

Table 1.2 For the peaks in Fig. 1.8 on page 28, the energy associated with each peak (or state),
the height of or number of molecules in each peak, the state associated with each peak, and the
energy associated with each peak

Peaks at Ee − Ee′ E0 − E0 E1 − E0 E2 −E0 . . . En −E0

Nn molecules have
been excited into the
n-th vibrational state

h0 ∼ N0 h1 ∼ N1 h2 ∼ N2 hn ∼ Nn

|0〉〈0| |1〉〈1| |2〉〈2| |n〉〈n| = |En〉〈En|
of energy E0 E1 E2 En

energy loss is used to excite a CO molecule into a higher vibrational state On,

energy loss ≡ Ee − Ee′ = En − E0.

The experiment7 in Fig. 1.7 on page 27 produced peaks in the electron current
registered in the detector at seven different values of energy loss. The height hn of
the n-th peak is shown in Fig. 1.8 on page 28. The interpretation is the following:
At the i-th peak with energy loss Ei − E0, a number Ni of molecules have been
excited into the i-th energy level. This is shown in detail in Table 1.2.

From the height hn of the n-th peak in Fig. 1.8 on page 28, it follows that the
fraction wn of molecules in each peak is

wn = hn

h
, (1.3.5)

where h is he sum of the heights of the eight peaks,

h =
∑

hn . (1.3.6)

Letting Nn be the number of CO molecules that have energy En, then wn is also
given by

wn = Nn

N
, (1.3.7)

where N is the total number of molecules in all eight peaks,

N =
∑

Nn . (1.3.8)

The number N of CO molecules that participate in this energy-loss experiment is
typically a large number on the order of Avogadro’s number NA = 6.022×1023. But
in some experiments the number of members in a quantum mechanical ensemble
may be orders of magnitude smaller. Neither N nor Nn can be counted since the
electron detector measures the current, but hn and Nn are proportional to the current.
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From (1.3.6) and (1.3.8), the wn fulfill

∑

wn =
∑ Nn

N
=
∑ hn

h
= 1 . (1.3.9)

After the collisions each of the Nn molecules has energy En = E0+n× (0.265)eV.
The molecules are said to be in the n-th energy level associated with an eigenvector
|En〉 of the Hamiltonian H . The height hn of each peak is proportional to the number
of electrons Nn detected in the n-th peak, so the height hn is proportional to the
number of CO molecules in the “excited state” |En〉〈En|. The numbers wn are the
ratios of two large numbers, wn = Nn/N , that are measured as intensities of the
electron current at the electron detector in Fig. 1.7b on page 27. It is reasonable to
think that the wn are proportional to the number of electrons that have lost energy
ΔEn = En − E0, n = 0, 1, . . . , 7 to the molecules. Specifically, wn, which is
proportional to the intensity of the molecules scattered with an energy En as shown
in Fig. 1.8 on page 28, is the probability that the CO molecule is in the n-th energy
level,

wn = hn

h
= Nn

N
. (1.3.10)

Equivalently, wn is the probability of finding a CO molecule in a scattered molecular
beam that has acquired the energy En − E0 from the scattered electrons.

1.3.4 Interpretation of the Experimental Results

In the energy-loss experiment the energy E0 is obtained N0 times, the energy E1 is
obtained N1 times, . . . , and the energy E7 is obtained N7 times. There are a total of
N collision events where N = N0 + N1 + · · · + N7. For the N measurements, the
average value for energy is denoted 〈E〉 and is given by

〈E〉 = 1

N
(N0E0 +N1E1 + · · · + N7E7) =

7
∑

n=0

Nn

N
En =

7
∑

n=0

wn En . (1.3.11)

The operators |En〉〈En| or the eigenvectors |En〉 represent the n-th energy
eigenstate, and wn is the probability that the CO molecule has been excited into
the n-th vibrational level. With the numbers wn and the projection operators Λn =
|En〉〈En| of (1.2.57)–(1.2.59), an operator ρ is defined by

ρ =
7
∑

n=0

wn|En〉〈En| . (1.3.12)

This operator ρ represents the state of all CO molecules that participated in the
energy-loss experiment of Fig. 1.7 on page 27. The operator ρ, called statistical
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operator or density operator, describes the state of the ensemble of molecules (all
the CO molecules that participate in this scattering experiment).

Example 1.3.1 Calculate the trace of the statistical operator ρ.11

Solution

Tr ρ ≡
∑

i

〈Ei |ρ|Ei〉 =
∑

i

〈Ei |
7
∑

n=0

wn|En〉〈En|Ei〉 .

Since the vectors |Ei〉 are an orthonormal basis satisfying 〈En|Ei〉 = δni ,

Tr ρ =
∑

i

∑

n

wnδinδin =
∑

i

wi = 1 .

The last equality follows from (1.3.9).

The number Nn is the number of molecules that have been excited into the n-
th energy level; Nn/N is the fraction of molecules that have been excited into the
n-th level of energy En. The ratio wn = Nn/N is thus the probability of finding
a molecule that has been excited into the n-th energy level from among of all
(participating) molecules in the ensemble.

As will now be shown, the probability wn for finding the value En in the state
ρ of (1.3.12) can be calculated as the trace of the operator (Λnρ), which is called
“expectation value of the observable Λn in the state ρ.” Calculating this trace using
the complete system of energy eigenvectors |Ei〉,

Tr(Λnρ) = Tr(|En〉〈En|ρ) =
∞∑

i=1

〈Ei |En〉
︸ ︷︷ ︸

δin

〈En|ρ|Ei〉 = 〈En|ρ|En〉 = wn ,

(1.3.13)

where (1.3.12) has been used to obtain the last equality.

11The trace Tr A of an N ×N matrixAij is defined by

Tr A =
N
∑

i=1

Aii .

Similarly, the trace Tr O of an operator O is defined to be sum over the diagonal matrix elements
of the operator in any basis:

Tr O =
∞
∑

ν=0

(φν,Oφν) ,

where φν is any basis system of the (infinite dimensional) space Φ. Operators O, which fulfill the

condition
∑∞

ν=0(φν, (O
†O)

1
2 φν) < ∞, are called trace-class operators. Here (O†O)

1
2 is the non

negative, unique square root of O†O.
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Thus,

(Expectation value of observable Λn in state ρ) ≡ Tr(ρΛn) = wn . (1.3.14)

The “expectation value of the observable H in the state ρ” is denoted by 〈H 〉ρ
and is defined by

〈H 〉ρ ≡ Tr(Hρ) . (1.3.15a)

The calculation of the expectation value of H in the state (1.3.12) gives

〈H 〉ρ ≡ Tr(Hρ) =
∑

i

〈Ei |ρH |Ei〉 =
∑

i

wi〈Ei |H |Ei〉

=
∑

i

wiEi =
∑

i

Ni

N
Ei ≡ 〈E〉 . (1.3.15b)

Thus the calculated quantity “the expectation value of the observable H in the
state ρ”≡ Tr(Hρ) is identified with the weighted average of the energy values
Ei = 0.265 · (i + 1

2 ) eV, i = 0, 1, 2 . . . measured by the energy-loss experiment
and calculated in (1.3.11) :

{

expectation value calcu-
lated in the theory

}

�
{

observed average value
of the experiment

}

. (1.3.16a)

Expressed as symbols, the above equation becomes

〈H 〉ρ ≡ Tr(Hρ) � 〈E〉 =
∑

i

Ni

N
Ei =

∑

i

wiEi . (1.3.16b)

The symbol � in the above equation expresses the correspondence between the
prediction Tr(Hρ) of the theory and the experimental average 〈E〉 and indicates
that these quantities should be equal to within experimental errors.

The calculated expectation value Tr(|En〉〈En|ρ) of the observable Λn ≡
|En〉〈En| in the state ρ is – according to (1.3.13) – the observed probability
wn = Nn/N given by the ratio of large numbers Nn/N , where Nn can be thought of
as the number of CO molecules in the n-th energy level, and N is the total number
of CO molecules that take part in the energy-loss experiment.

What is the expectation value of an observable such as P , Q, or P 2 in the energy
eigenstate described by a vectors φEn = |En〉eiϕ or by the operator |φn〉〈φn| =
|En〉〈En| = Λn? In general the expectation value of an observable A in the energy
eigenstate Λn = |φn〉〈φn|, often denoted as 〈A〉φn , is

〈A〉φn ≡ Tr(|φn〉〈φn|A) =
∑

i

〈Ei |ΛnA|Ei〉 = 〈En|A|En〉 . (1.3.17)



34 1 Quantum Harmonic Oscillator

Specifically, the expectation value of the energy operator H in the energy eigenstate
|φn〉〈φn| = Λn is the energy eigenvalue

〈H 〉φn ≡ Tr(|En〉〈En|H) = En Tr(|En〉〈En|) = En . (1.3.18)

This means that the measurement of the observable H in one of its eigenstates φn

gives the eigenvalue En of H in this state.
As a generalization of the expectation value in (1.3.17) to the expectation value

of an arbitrary observable A such as P , Q, P 2, or f (P,Q) in the general state ρ,
the following Axiom is conjectured:

{

Expectation value of observ-
able A in a state ρ

}

≡ 〈A〉ρ = Tr(Aρ) = Tr(ρA) . (1.3.19)

Applying this axiom to the mixed state ρ in (1.3.12),

Tr(Aρ) =
7
∑

n=0

wn Tr(A|En〉〈En|) =
∑

m

7
∑

n=0

wn〈Em|A|En〉〈En|Em〉

=
∑

m

7∑

n=0

wn〈Em|A|En〉δn,m =
7∑

n

wn〈En|A|En〉 . (1.3.20)

The above equation shows that the expectation value of an observable A is the
weighted average of the expectation values 〈En|A|En〉 of A in the energy eigenstates
|En〉〈En|.

1.4 Fundamental Postulates of Quantum Mechanics

For a theory the fundamental postulates such as (1.3.19) cannot be derived. Using
insight provided by many experimental results, the fundamental postulates can only
be conjectured. The energy-loss experiment discussed in Sect. 1.3.2 is used to justify
the following fundamental postulates of quantum mechanics, called axioms:

1.4.1 Algebra of Observables—Fundamental Postulate I

A physical observable, defined by the process by which it is measured, is represented
by a linear operator A in a linear space. The mathematical image of a physical
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system is an algebra of linear operators in a linear, scalar-product space Φ.12 The
algebra is generated by fundamental observables representing basic physical quan-
tities, and multiplication is defined by algebraic relations among these fundamental
observables.

For the simple example of the one-dimensional harmonic oscillator, the algebra
of observables is generated by the following (essentially self-adjoint) operators in
the space Φ:

H represents the observable energy
P represents the observable momentum
Q represents the observable position

The defining algebraic relation that is fulfilled by these operators is the canoni-
cal commutation relation that is universally satisfied in non-relativistic quantum
mechanics,

[Q,P ] ≡ QP − PQ = ih̄1 , [P,P ] = [Q,Q] = 0 , (1.4.1)

where h̄ is a universal constant and 1 is the unit operator. The Hamiltonian for the
harmonic oscillator is

H = P 2

2μ
+ μω2

2
Q2 , (1.4.2)

where μ and ω are system constants.

1.4.2 Quantum Mechanical States—Fundamental Postulate II

The state of the quantum system is represented by a positive, hermitian, trace-class
operator ρ, which is called the statistical or density operator. The expectation value
of an observable A in the state ρ is given by

〈A〉ρ = Tr(Aρ) where Tr ρ = 1 . (1.4.3)

The “expected value” or “expectation value” of the observable A in the state ρ,
denoted 〈A〉ρ or just 〈A〉, is determined by experimental procedures that prepare the
state ρ as well as other experimental procedures that define the observable A.

12Here, for the description of the spectrum and structure of quantum systems such as the oscillator,
the space Φ can be a Schwartz space as given in (1.2.62). When discussing scattering, resonance,
and decay phenomena, Φ must be a pair of Hardy spaces, one for states and the other for
observables.
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A series of N measurements of the observable A are carried out to determine
its “expectation value” 〈A〉. Either the measurement is performed on N identical
quantum systems or the measurement is performed N times on one physical system
while making certain that the system is identically prepared for each measurement.

If the numbers measured for the observable A are denoted a0, a1, . . . , an, . . . ,

and Nn is the number of measurements that gave the result an, then 〈A〉 is given by
the average value of these measurements,

〈A〉 =
∑

n

Nn

N
an , (1.4.4)

for sufficiently large N . That is, N must be large enough that the right-hand side
of (1.4.4) would fluctuate only slightly if N were increased. The ratio wn = Nn/N

is the probability for obtaining the value an in one measurement. Thus 〈A〉 is the
experimentally determined average value.

The operator A is the mathematical representation of an observable, and ρ is the
mathematical representation for a state. If the mathematical image of the quantum
system (i.e. the theory for the system) is known, then it is possible to calculate
Tr(Aρ), the mathematical quantity that follows from the theory. The average value
〈A〉 in (1.4.4) is the number measured in experiments. The equality

〈A〉 ≡
∑

n

Nn

N
an � Tr(Aρ) = 〈A〉ρ , (1.4.5)

expresses the equality between the value of 〈A〉 measured by a large number N

of experimental data and the quantity 〈A〉ρ calculated by the mathematical theory.
As mentioned in the previous section, the symbol � in (1.4.5) indicates that the
experimental values 〈A〉 and the theoretical predictions Tr(Aρ) should be equal to
within experimental errors.

The state operator (also called the statistical operator) ρ13 is the mathematical
quantity that represents the quantum physical state. It is especially useful for
describing mixtures, physical states that cannot be described by a vector or a wave
function. A special case that is frequently discussed is a “pure state.”

1.4.3 Pure State—Fundamental Postulate IIa

The pure state of a physical system, which is associated with an ensemble of micro-
physical objects, is described by a vector φ (up to a phase) or, equivalently, by a
state operator ρφ = |φ〉〈φ| that projects onto a one-dimensional space. In this state

13The matrix elements 〈En|ρ|E′n〉 form the density matrix.
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the expectation value of an observable A is given by

∑

n

Nn

N
an � Tr(A|φ〉〈φ|) = 〈φ|A|φ〉 , (1.4.6)

which is the matrix element of A between the state vector φ. If a state is prepared in
such a way, that the measurement of the observable A always results in one value a,
then φ is an eigenvector of A with the eigenvalue a.

Because no measurement in physics is absolutely precise, agreement between
the measured and predicted quantities is expected only to within a certain error. As
opposed to classical physics, in quantum physics an entirely new feature comes into
play: theoretical quantities such as Tr(Aρ) and, in the case of a pure state 〈φ|A|φ〉
or 〈φ|Λn|φ〉 = 〈φ|n〉〈n|φ〉 represent the average values of measurements and do
not predict the result of a single measurement, which in general is predicted only to
within a theoretical error. In quantum theory there are theoretical uncertainties.

1.4.4 Uncertainties and Standard Deviations

In the energy-loss experiment, the energy E0 is obtained N0 times, the energy E1 is
obtained N1 times, . . . , and the energy E7 is obtained N7 times. There are a total
of N measurements where N = N0 + N1 + · · · + N7. For the N measurements,
the average value obtained for energy is denoted 〈E〉 and is given by (1.3.11). The
statistical deviation from the average value 〈E〉 is denoted ΔE and is given by the
root-mean-square deviation (or standard deviation) defined by

ΔE =
√
√
√
√

7
∑

n=0

Nn

N
(En − 〈E〉)2 =

√
√
√
√

7
∑

n=0

NnE2
n

N
− 〈E〉2 =

√

〈E2〉 − 〈E〉2 .

(1.4.7)

Generalizing to an arbitrary linear operator A = P, Q, PQ etc, for which the value
ai is obtained Ni times, the root-mean-square deviation Δa from the average value
〈a〉 is

Δa =
√
√
√
√

∞
∑

i=0

Nia
2
i

N
− 〈a〉2 =

√

〈a2〉 − 〈a〉2 . (1.4.8)
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Using the notion of the “expectation value” of an observable A, the following
statistical quantity is introduced: The uncertainty of an observable A in the pure
state φ is defined by

ΔφA =
√

〈φ|A2|φ〉 − 〈φ|A|φ〉2 . (1.4.9)

Using the fact that the statistical operator for a pure state φ is ρ = Λφ = |φ〉〈φ|, the
above equation can be rewritten as (Problem 1.17)

ΔφA =
√

Tr(ΛφA2)− (Tr ΛφA)2 . (1.4.10)

For a system in a state characterized by the general statistical operator ρ,
the uncertainty of an observable A in a general state ρ, ΔρA is defined by a
straightforward generalization of (1.4.10):

ΔρA =
√

Tr(ρA2)− (Tr(ρA))2 =
√

〈A2〉ρ − (〈A〉ρ)2 . (1.4.11)

To obtain a more intuitive grasp of the meaning of the uncertainty of an
observable, the uncertainty of the energy operator is calculated for the CO molecule
in the state ρ given by (1.3.12) for the energy-loss experiment depicted in Fig. 1.7
on page 27. Inserting ρ of (1.3.12) into (1.4.11) for the observable H ,

ΔρH =
√

Tr(ρH 2)− (Tr(ρH))2 =
√

〈H 2〉ρ − (〈H 〉ρ)2

=
√
√
√
√Tr(

7
∑

n=0

wnΛnH 2)− (Tr(
7
∑

n=0

wnΛnH))2

=
√
√
√
√

7∑

n=0

wn〈En|H 2|En〉 − (

7∑

n=0

wn〈En|H |En〉)2

=
√
√
√
√

7
∑

n=0

wnE2
n − (

7
∑

n=0

wnEn)2 . (1.4.12)

The expression on the right-hand side of (1.4.12) is always non-negative, even when
the number of terms in the sum is infinite instead of just seven. This result follows
from the Cauchy inequality for infinite sequences:

(

∞
∑

n

xnyn)
2 ≤ (

∞
∑

n

x2
n)(

∞
∑

n

y2
n) . (1.4.13)
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Taking xn = √wn and yn = En
√

wn, the above equality takes the desired form,

(

∞
∑

n

wnEn)
2 ≤ (

∞
∑

n

wn)(

∞
∑

n

wnE
2
n) =

∞
∑

n

wnE
2
n . (1.4.14)

The final equality above follows from (1.3.9).14

Equation (1.4.7) gives the statistical deviation ΔE from the average value 〈E〉
of the measurement (1.3.11) for the energy. The experimental deviation ΔE is
associated with the theoretical uncertainty of the energy operator ΔρH of quantum
theory as given in (1.4.12),

ΔρH � ΔE . (1.4.15)

In general the quantum theoretical uncertainty ΔρA of the observable A in (1.4.11)
is the theoretical analogue of the experimental root-mean-square deviation Δa

in (1.4.8).

ΔρA � Δa . (1.4.16)

The uncertainty ΔρH is equal to zero if wn = δnk , which is true only if ρ =
Λ|Ek〉 = |Ek〉〈Ek|. This means that the uncertainty of the energy H in the state
ρ, denoted ΔρH , is equal to zero only if ρ is a pure energy eigenstate Λ|Ek〉. For
instance, if the system is not in the mixed state ρ of (1.3.12) but is instead in a pure
energy eigenstate |En〉〈En|, then the uncertainty for the energy operator is

Δ|En〉H =
√

〈H 2〉|En〉 − 〈H 〉2|En〉 =
√

〈En|H 2|En〉 − 〈En|H |En〉2 =
√

E2
n − E2

n = 0 .

(1.4.17)

The value of “uncertainty” ΔρH is thus a theoretical expression for the uncertainty
in the outcome of the single measurement of the observable H .

If the system is in the pure state |En〉, all molecules of the ensemble described by
Λ|En〉 = |En〉〈En| should be “the same”; therefore, each molecule should have
the same energy En, each measurement should lead to the same value, and the
uncertainty Δ|En〉H for the energy H should be zero. The probability wn = 1, and
the probabilities for all other energy values should be zero, wp = 0 for Ep �= En.
The uncertainty deviates from zero if more than one value wn is different from zero
(Problem 1.18). The larger the number of non-zero wn, the larger the uncertainty
ΔρH , where the wn satisfy the condition (1.3.9). If the system is in a mixture
ρ =∑

wn|En〉〈En|with w0, w1, . . . , w7 all different from zero, then the molecules

14As shown in Example 1.3.1 on page 32, the condition Tr(ρ) = 1, which is part of Fundamental
Postulates II, implies (1.3.9).
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are in a mixture of eight kinds of molecules, one with energy E0, the next with E1,
etc. In a measurement of H , each value En is obtained with probability wn �= 1,
and the uncertainty of H , as given in (1.4.12), is different from zero. For a mixture
of molecules with different energy values, it is expected that the root mean square
deviation (1.4.12) from the average energy value 〈E〉 = 〈H 〉ρ is non-zero since the
mixture contains molecules with different energies En.

If the CO molecules were all in a single energy eigenstate |Ek〉, then a standard
deviation of zero is expected: at least in classical physics all CO molecules are “the
same” and, therefore, all values of their observables should be the same. This is
indeed the case for the energy observable H in the energy eigenstate

|Ek〉 : ΔΛk =
√

Tr(ΛEkH
2)− (Tr(ΛkH))2 =

√

E2
k − E2

k = 0 .

But for the expectation values of other operators such as Q, Q2, P , and P 2, in
an energy eigenstate, this is not the case. To calculate the expectation values 〈Q〉,
〈Q2〉, 〈P 〉, and 〈P 2〉 in the state ρ of CO molecules, the following matrix elements,
which are calculated in Problem 1.6, are required:

〈En|Q|En〉 = 0 〈En|P |En〉 = 0 (1.4.18a)

〈En|Q2|En〉 = h̄

2μω
(2n+ 1) 〈En|P 2|En〉 = μωh̄

2
(2n+ 1) .

(1.4.18b)

For the ensemble of CO molecules in the state ρ of (1.3.12),

〈Q〉ρ =
7
∑

n=0

wn〈En|Q|En〉 = 0 , (1.4.19a)

〈P 〉ρ =
7∑

n=0

wn〈En|P |En〉 = 0 , (1.4.19b)

〈Q2〉ρ =
7
∑

n=0

wn〈En|Q2|En〉 =
7
∑

n=0

wn
h̄

2μω
(2n+ 1) , (1.4.19c)

〈P 2〉ρ =
7
∑

n=0

wn〈En|P 2|En〉 =
7
∑

n=0

wn
μωh̄

2
(2n+ 1) . (1.4.19d)
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Using (1.4.19) the uncertainty of the measurement of Q or P can be calculated using
the definition (1.4.11) (Problem 1.19),

ΔρQ =
√

〈Q2〉ρ − (〈Q〉ρ)2 =
√
√
√
√

7∑

n=0

wn
h̄

2μω
(2n+ 1) , (1.4.20a)

ΔρP =
√

〈P 2〉ρ − (〈P 〉ρ)2 =
√
√
√
√

7
∑

n=0

wn
μωh̄

2
(2n+ 1) , (1.4.20b)

and find that in the mixed state ρ of (1.3.12), the uncertainties of P and Q are
different from zero. This is not a surprise since ρ is a mixture of several energy
eigenstates that contain molecules with different energies En, n = 0, 1, . . ..

The uncertainties are now calculated for the operators Q and P in a pure state
Λ|Ek〉 = |Ek〉〈Ek| with a definite energy value Ek . Then all the molecules of this
ensemble have the same energy, namely Ek , so they are completely identical. The
uncertainties are calculated using (1.4.19) with the result

Δ|Ek〉Q =
√

〈Q2〉|Ek〉 − (〈Q〉|Ek 〉)2 =
√

h̄

2μω
(2k + 1) (1.4.21a)

Δ|Ek〉P =
√

〈P 2〉|Ek〉 − (〈P 〉|Ek 〉)2 =
√

μωh̄

2
(2k + 1) (1.4.21b)

In a pure state in quantum mechanics, the uncertainty for an observable is, in
general, different from zero!

Even under ideal conditions, when the values of the position operator Q are
measured in a pure energy eigenstate ρ = Λ|Ek〉, different measurements yield
different values. For instance, the values x1 is obtained with a frequency N1/N ,
x2 is obtained with a frequency N2/N . . ., where N =∑

i Ni . The average value is

〈x〉 =
∑

i

Ni

N
xi. (1.4.22)

This average value is calculated in quantum theory as the expectation value of the
position operator in the energy eigenstate |Ek〉. According to (1.4.19a),

〈Q〉|Ek 〉 = 〈Ek|Q|Ek〉 = Tr(Q|Ek〉〈Ek|) = 0 . (1.4.23)

In an experiment with a large number of measurements, the two values should agree,

〈Q〉|Ek 〉 � 〈x〉 . (1.4.24)
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The theoretical error in the expected value of Q is calculated in (1.4.20a). Since
Δ|Ek〉Q �= 0, even in the ideal situation where all oscillators are in the pure
energy eigenstate Λ|Ek〉 = |Ek〉〈Ek|, the values of the position operator Q are
only determined to within a quantum theoretical error Δ|Ek〉Q. The quantum
mechanical uncertainty Δ|Ek〉Q agrees with the root-mean-square deviation Δx in
an experiment with a large number of measurements:

Δ|Ek〉Q � Δx =
√
∑

i

Ni

N
x2
i − 〈x〉2 . (1.4.25)

Although the expectation values (1.4.19a) are zero for every energy eigenstate |Ek〉,
the predicted root-mean-square deviations (1.4.20a) are all different from zero.

Summarizing, the quantum theoretical expectation value (1.4.3) of the observable
A in the state ρ corresponds to the average value of the measurement (1.4.4), and
the quantum theoretical uncertainty (1.4.11) corresponds to the root-mean-square
deviation from the “measured” value (1.4.8),

〈A〉ρ � 〈a〉, ΔρA � Δa . (1.4.26)

Specifically, the expectation value of the observable H in (1.3.15a) that is in the
mixed state ρ of (1.3.12) for the energy-loss experiment Fig. 1.7 on page 27
corresponds to the measured average value as expressed by (1.3.11). And the
uncertainty of the observable H in the mixed state ρ of (1.3.12) as given by (1.4.12)
corresponds to the root mean square deviation (1.4.7).

1.4.5 Heisenberg Uncertainty Principle

Even in pure states the outcome of the measurement of an observable is, in
general, uncertain. Statistics cannot in principle be eliminated from quantum
mechanics; systems in the “same pure state” do not give the same value in identical
measurements. One measurement of an observable A gives the value a1 and a
second, identical measurement can give the value a2, etc. All that can be determined
theoretically is the probability wn that a certain value an = 〈En|A|En〉 can be
expected in the measurement of an observable A.

For the k-th energy eigenstate of the harmonic oscillator, these “theoretical
root-mean-square deviations” called “uncertainties” of the position and momen-
tum operator are given by (1.4.21). Using (1.4.21) to calculate the product
Δ|Ek〉P Δ|Ek〉Q in the k-th energy eigenstate,

Δ|Ek〉P Δ|Ek〉Q = h̄(k + 1

2
) .
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For k = 0 the above equation becomes,

Δ|E0〉P Δ|E0〉Q = h̄

2
.

Thus for any pure energy eigenstate of the harmonic oscillator

ΔP ΔQ ≥ h̄

2
. (1.4.27)

This above relation is true in general and is called the Heisenberg uncertainty
relation. It reveals that it is impossible to simultaneously know both the position
and momentum with arbitrary precision. The Heisenberg uncertainty relation is a
mathematical consequence15 of the Heisenberg commutation relations [Q,P ] =
ih̄1.

1.5 Radiative Transitions

1.5.1 Dipole Radiation

In the energy-loss experiment depicted in Fig. 1.7 on page 27, the energy levels of
the vibrating CO molecule were measured by exploiting energy conservation in the
process (1.3.2). Specifically, the energy ΔE of (1.4.3) lost by an electron equals the
energy gained by the CO molecule. The difference between adjacent energy levels
of the CO molecule are determined by measuring the energy lost by electrons as a
function of sweep voltage as depicted in Fig. 1.8 on page 28. The electrons loose
only discrete amounts of energy as shown by the equally spaced peaks, indicating
that the energy levels of the CO molecule are also equally spaced 0.265 eV apart.

The most significant structure of a vibrating diatomic molecule—CO or any
molecule consisting of unlike atoms—is its electric dipole moment. The dynamical
picture of the CO molecule is a carbon and an oxygen nucleus with electrons
swirling around them. The centers of positive and negative charge do not coincide
for molecules consisting of unlike atoms, and the electric dipole moment is the
vector directed from the center of negative charge to the center of positive charge
given by

Dclassical
0 = qd , (1.5.1)

where q is the charge and d is the distance between the centers of the positive and
negative charge.

15A. Bohm, Foundations and Applications 2nd ed., Springer-Verlag, Berlin, Heidelberg, New York,
1986.
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When an electric dipole oscillates, the charges are accelerated so they emit
electromagnetic radiation. In quantum mechanics, a photon is emitted when a
transition is made from the excited oscillator state Om of the CO molecule to a
lower oscillator state Om−1,

Om → Om−1 + γ , (1.5.2)

Energy conservation for this process yields

Em = Em−1 + Eγ . (1.5.3)

Using the fact that the energy of the photon is Eγ = hνγ , where νγ is the frequency
of the emitted electromagnetic radiation, the above equation becomes

Em − Em−1 = hνγ = h̄ωγ . (1.5.4)

The energy difference on the left-hand side of (1.5.8) can be calculated from (1.2.40)
for the energy levels of the oscillator,

Eγ = Em − Em−1 = h̄ω

(

m+ 1

2

)

− h̄ω

(

m− 1+ 1

2

)

= h̄ω . (1.5.5)

From (1.5.5) it follows that the emitted light has an angular frequency ωγ that equals
the angular frequency ω = √

k/m of the vibrating molecule. Here k is the spring
constant (1.2.2) of the diatomic vibrator and μ is its reduced mass (1.2.6). That
is, the electromagnetic radiation is emitted at the characteristic frequency of the
vibrating diatomic molecules.

When the centers of charge (−q) and (+q) are not vibrating, the permanent
dipole moment Dclassical

0 of the molecule lies along the internuclear axis. If the
interatomic (or internuclear) distance changes, the dipole moment will change. To
a good approximation the dipole moment is a linear function of the deviation from
the equilibrium position d of the interatomic distance,

Dclassical = q(d + x) = Dclassical
0 + q x . (1.5.6)

The change in position x of the centers of positive and negative charge oscillates
with the frequency of the mechanical vibration, so the electric dipole moment
oscillates with the same frequency.

From the correspondence principle, the transition from the classical to the
quantum oscillator is accomplished by making the replacement x → Q with the
result that the classical dipole moment Dclassical

0 = qd in (1.5.6) is replaced by the
dipole operator

D = D0 + qQ , (1.5.7)
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where Q is the operator of the relative position of the center of positive charge (+q)

and negative charge (−q). The permanent dipole moment D0 of the molecule does
not act as an operator in the space of oscillator states but will play a role when
rotation of the diatomic molecule in the three- dimensional space is discussed in the
next chapter. Thus the dipole operator for radiation between the oscillator states is
the operator

D = qQ . (1.5.8)

For molecules consisting of two like atoms such as O2 or N2, the electric dipole
moment operator (1.5.6) is the zero operator because the centers of positive and
negative charge coincide. Oscillations of such molecules about the equilibrium
position do not lead to oscillations of the centers of charge, so no emission or
absorption of electromagnetic radiation occurs, and there are no transitions between
different energy levels

The average power Rnm
16 emitted by dipole radiation for transitions from the

oscillator energy eigenstates |Em〉 to the states |En〉17 of the quantum system is
given by

Rnm =
ω4

γ q2

3πε0c3
|〈En|Q|Em〉|2 . (1.5.9)

Since the matrix element 〈En|Q|Em〉 as given by (1.2.52) is zero unless n =
m± 1, the average power Rnm radiated by a dipole is zero unless

n = m− 1 or n = m+ 1 . (1.5.10)

The above rules are called the selection rules for dipole transitions.
Because the interaction between the electron and diatomic oscillators in the

energy-loss experiment (1.3.2) is entirely different from the dipole interactions of
a CO molecule with the electromagnetic field, the energy-loss experiment is not
subject to the restrictions given by the selection rules (1.5.10), and transitions to all
excited states are possible as long as energy conservation is fulfilled (and as long as
the CO molecule remains an oscillator).

16This formula is derived in many quantum mechanics texts. See, for example, D. Park,
Introduction to the Quantum Theory, 3rd Ed., McGraw-Hill, New York, 1992.
17In quantum mechanics it is conventional to label quantities first by the quantum number(s) of the
final state—in this case by n—and then by the quantum number(s) of the initial state—in this case
by m.
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For the process (1.5.2), energy conservation (1.5.3) allows emission to occur only
when the final state, labeled by n, satisfies n = m − 1. Dipole transitions can also
occur when a dipole absorbs a photon in the process

γ +Om → Om+1 . (1.5.11)

Energy conservation for the above process yields

Eγ + Em = Em+1 . (1.5.12)

Energy conservation requires that the final state of the oscillator, characterized my
the number n satisfy n = m+ 1. Using the same logic that lead to (1.5.5),

Eγ = Em+1 − Em = h̄ω

(

m+ 1+ 1

2

)

− h̄ω

(

m+ 1

2

)

= h̄ω = hνγ = h̄ωγ .

(1.5.13)

From (1.5.5) and (1.5.13) it follows for either photon emission as depicted in (1.5.2)
or for photon absorption shown in (1.5.11), the angular frequency of the emitted
or absorbed photon equals the characteristic angular frequency of the oscillator,
ωoscillator = √

k/μ = ωγ . Thus the frequency of radiated light is independent of
the energy level n. In summary, for the particular case of the quantum mechanical
harmonic oscillator, the frequency of emitted and absorbed light is the same from
all energy levels and is equal to the frequency of the vibrating diatomic molecule.

Other electromagnetic transitions such as quadrupole transitions due to the
matrix elements 〈n|Q ·Q|m〉 and higher multipole transitions are possible; however,
the contributions of these matrix elements are smaller by the ratio18 of the Bohr
radius rB to the wavelength, rB/λ ∼ 0.5× 10−8cm/0.5× 10−4cm ∼ 10−4. Since
the intensity is proportional to the square of the magnitude of the matrix element,
the intensity is smaller by a factor of 10−8 and is too small to be observed.

1.5.2 Einstein Coefficients

Beginning with the formula (1.5.9) for the average power Rnm emitted during the
spontaneous emission of a photon in the process (1.5.2), it is possible to calculate
the transition rate, the number of oscillators that make the transition Om → On+ γ

per unit time. Since the observed quantum mechanical quantity is a probability,
the transition rate for dipole radiation between neighboring energy levels of the
oscillator must also be expressible in terms of probabilities. The probability is

18C. Cohen-Tannoudji, B. Diu, F. Laloë, Quantum Mechanics v. 2, p. 1313, Wiley &Sons, New
York, NY, 1977.
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expressed in terms of the square of the absolute value of the matrix element
|〈En|Q|Em〉|2 in (1.5.9). The quantity |〈En|Q|Em〉|2 is the probability of observing
the property |En〉〈En| in the state φ = Q|Em〉.
(Probability for tran-

sition from the state
φ to the state |En〉

)

= Tr(|En〉〈En|φ〉〈φ|) = |〈En|φ〉|2 = |〈En|Q|Em〉|2.
(1.5.14)

The quantity 〈En|φ〉 is, therefore, called the transition probability amplitude or just
the transition amplitude for a transition from the state φ to the energy eigenstate
|En〉. In the same spirit 〈En|Q|Em〉 is called the transition amplitude for a transition
performed by the observable Q between the energy eigenstates |En〉 and |Em〉.

According to the statistical interpretation of quantum mechanics, the ensemble
of CO molecules has Nm oscillators in the energy eigenstate |Em〉. It is not possible
to say which of the oscillators will make the transition to the state |En〉 because
the transitions occur randomly. After a time Δt the number of oscillators that have
made the transition to the state |En〉 is denoted Nnm < Nm. The time Δt must be
large enough so that Nnm is sufficiently large that a repetition of the experiment will
yield approximately the same fraction of transitions Nnm/Nm. The probability for
the emission of a photon with energy h̄ωnm = Em − En during the time Δt is then
Nnm/Nm.

Since a transition from the energy eigenstate |Em〉 to the eigenstate |En〉 leads
to the emission of the energy Em − En = h̄ωnm, the average energy emitted
by the ensemble is (Nnm/Nm)h̄ωnm. This equals the average emitted power Rnm

multiplied by the time interval Δt , RnmΔt . From the correspondence between the
classical and quantum expressions we therefore obtain

average emitted energy ≡ Nnm

Nm

h̄ωnm = RnmΔt = ω4
γ q2

3πε0c3 |〈En|Q|Em〉|2Δt .

(1.5.15)

The final equality is obtained with the aid of the explicit expression (1.5.9) for Rnm.
The probability of a transition from |Em〉 to |En〉 per unit time is

(

probability of a transition from
|Em〉 to |En〉 per unit time

)

= Nmn

Nm

1

Δt
. (1.5.16)

The desired expression for the transition probability per unit time is immediately
obtained by solving (1.5.15) for Nmn/(NmΔt) and using ωmn = ωγ that follows
from (1.5.5),

Nmn

Nm

1

Δt
= ω3

γ q2

3πε0c3h̄
|〈En|Q|Em〉|2 . (1.5.17)
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The transition probability per unit time or the transition rate for a transition from
level |Em〉 to level |En〉 as a result of the spontaneous emission of photon with
energy Eγ of (1.5.9) is denoted Amn

19 and is called the Einstein coefficient20 for
spontaneous emission. According to (1.5.18),

Amn =
ω3

γ q2

3πε0c3h̄
|〈En|Q|Em〉|2 . (1.5.18)

Since Amn is the probability of decay per unit time, the lifetime τmn of the excited
state |Em〉 for decay into the state |En〉 is the reciprocal of Amn,

τnm = 1

Amn

= 3πε0c
3h̄

ω3
γ q2|〈En|Q|Em〉|2 . (1.5.19)

If an ensemble of diatomic molecules is placed inside a backbody radiator,
in addition to spontaneous emission of photons, the molecules can undergo two
additional electromagnetic transitions. In a black body at temperature T , the energy
distribution of photons as a function of the photon angular frequency ω is21

u(ω) = h̄ω3

π2c3

1

eh̄ω/kT − 1
, (1.5.20)

where u(ω)dω is the energy density of the photons in the angular frequency range
ω to ω + dω and k is Boltzmann’s constant.

The three electromagnetic transitions that oscillators can undergo in a black body
are as follows:

1. Spontaneous Emission has already been discussed: the oscillator Om in the state
|Em〉 emits a photon in the transition Om → On + γ , where n = m − 1. The
probability of a transition per unit time is the Einstein coefficient Amn given
in (1.5.18). In the black body if there are Nm oscillators in the state |Em〉, the
total number of oscillators that make the transition from state |Em〉 to state |En〉
per unit time is

(
number of oscillators undergoing
spontaneous emission per unit
time

)

= NmAmn . (1.5.21)

19Using Einstein’s notation, the Einstein coefficients are labeled first by the quantum number(s) of
the initial state—in this case by m—and then by the quantum number(s) of the final state—in this
case by n.
20A. Einstein, Physik. Z.,18, 121(1917).
21The photon energy density u(ω) or the photon angular frequency density is the time average of
the magnitude of the Poynting vector divided by c.
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2. Induced Emission is the process by which an oscillator Om is induced by
the presence of electromagnetic radiation to emit an electron in the transition
Om → On + γ . The angular frequency of the radiation must be at or near the
angular frequency ω = (Em − En)/h̄ of the emitted photon, just as the driving
frequency must be near the resonant frequency of a system to get a large response.
The probability of induced emission per unit time is proportional to the density
of radiation at the angular frequency ω = (Em − En)/h̄. The proportionality
constant is defined to be the Einstein coefficient Bmn so the probability of a
transition per unit time is u(ω)Bmn. In the black body if there are Nm oscillators
in the state |Em〉, the total number of oscillators that are induced to make the
transition from state |Em〉 to state |En〉 per unit time is

(

number of oscillators undergoing
induced emission per unit time

)

= Nmu(ω)Bmn . (1.5.22)

3. Spontaneous Absorption is the process by which an oscillator On in the initial
state |En〉 absorbs a photon in the transition On + γ → Om, where m = n+ 1.
The probability of a transition per unit time is proportional to the density of
radiation at the frequency ω = (Em − En)/h̄. The proportionality constant is
defined to be the Einstein coefficient Bnm so the probability of a transition per
unit time is u(ω)Bnm. In the black body if there are Nn oscillators in the state
|En〉, the total number of oscillators that are induced to make the transition from
state |En〉 to state |Em〉 per unit time is

(

number of oscillators undergoing
induced absorption per unit time

)

= Nnu(ω)Bnm . (1.5.23)

In thermal equilibrium the total number of oscillators emitting photons per unit
time must equal the total number of oscillators absorbing photons per unit time:

⎛

⎜
⎜
⎝

number of
oscillators
undergoing
spontaneous
emission per unit
time

⎞

⎟
⎟
⎠
+
⎛

⎝

number of oscil-
lators undergoing
induced emission
per unit time

⎞

⎠ =
⎛

⎝

number of oscil-
lators undergoing
induced absorption
per unit time

⎞

⎠ .

(1.5.24)

Using (1.5.21)–(1.5.23) the above equation can be written as

NmAmn +Nmu(ω)Bmn = Nnu(ω)Bnm . (1.5.25)

Solving for u(ω),

u(ω) = Amn

Nn

Nm
Bnm − Bmn

. (1.5.26)
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At thermal equilibrium Gibbs distribution22 is

Nn

Nm

= e−En/kT

e−Em/kT
= e(Em−En)/kT = eh̄ω/kT , (1.5.27)

where (1.5.5) has been used to obtain the final equality. Substituting (1.5.27) into
(1.5.26), the expression for u(ω) becomes

u(ω) = Amn

eh̄ω/kT Bnm − Bmn

. (1.5.28)

The above expression for u(ω) agrees with (1.5.20) iff

Bnm = Bmn and
Amn

Bmn

= h̄ω3

π2c3
. (1.5.29)

From (1.5.18) it then immediately follows that Einstein’s coefficient Bmn is given
by

Bmn = π q2

3ε0h̄
2
|〈En|Q|Em〉|2 . (1.5.30)

1.5.3 Comparison with Experimental Results

The theoretical results are now compared with experimental data. The frequency of
emitted photons in dipole decay of CO diatomic molecules can be determined from
the energy-loss spectrum of the CO molecules in Fig. 1.8 on page 28. From the
voltage difference between the equally spaced peaks in the energy-loss spectrum, it
follows that the energy difference between adjacent energy levels of the vibrating
CO molecule is

ΔE = 0.265 eV . (1.5.31)

The frequency of the emitted photon can be calculated using energy conserva-
tion (1.5.5),

νγ = ΔE

h
= 0.265 eV

4.14× 10−15 eV s
= 6.41× 1013 Hz . (1.5.32)

22L. D. Landau and E. M. Lifshitz, Statistical Physics 5 V.1 (3 ed.) Pergamon Press, Oxford, 1980).
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The wavelength corresponding to this frequency is

λ = c

ν
= 3.00× 108 m/s

6.41× 1013/s
= 4.68× 10−6 m . (1.5.33)

In molecular spectroscopy it is customary to express the frequency ν as the
wave number ν/c, where c is the speed of light in cm/s, although the wave number
ν/c = 1/λ is actually the number of waves per cm. Instead of introducing a new
symbol, the wave number is also denoted ν. The frequency ν and wave number ν

are distinguished by the units in which they are measured. The wave number ν/c of
the radiation emitted by the transition between the vibrational levels of CO is then

ν = 6.41× 1013 s−1

3.00× 1010 cm/s
= 2140 cm−1 . (1.5.34)

From the above discussion it follows that vibrating CO molecules emit or absorb
electromagnetic radiation only with the single frequency given by (1.5.34). That is,
only one spectral line is detected in the near infrared region. To show where infrared
radiation is in the electromagnetic spectrum and to give orders of magnitude for the
energy, frequency, wave number, and wavelength of the various types of radiation
involved in molecular spectroscopy, a table of the electromagnetic spectrum is
shown in Fig. 1.9 on the next page.

In the experimental absorption or emission spectra for CO, there is only the
single frequency at ν = 2140 cm−1, so the theoretical prediction is fulfilled to a
high degree of accuracy. If the absorption spectrum is obtained with a thin layer of
absorbing gas, then only a single, broad, intense absorption line (or band) is detected
in the near infrared region with a wave length around λ = 4.68× 10−6 m. For other
diatomic molecules consisting of unlike atoms, similar data is obtained: for HCl the
band lies at λ = 3.46× 10−6 m. Also, bands do not appear for molecules consisting
of like atoms such as O2, N2, and H2 because, as previously discussed, the electric
dipole moment is zero for diatomic molecules consisting of two identical atoms.

If the absorption is observed with thicker layers of gas, the intensity of absorption
of the fundamental band naturally increases because more molecules are undergoing
dipole transitions. In addition, a second band similar in form but much weaker than
the first appears at approximately half the wavelength or double the frequency. If
the number of molecules undergoing dipole transitions is increased still further
by increasing the pressure of the gas, a third and possibly even a fourth and a
fifth band appear with wavelengths that are approximately a third, a fourth and
a fifth, respectively, of that of the first band. The frequencies of these bands are,
respectively, approximately three, four and five times that of the first band as can
be seen in Fig. 1.5 on page 23, which schematically shows the complete infrared
spectrum of the HCl diatomic molecule. In this figure the lengths of the vertical
lines that represent the bands give an indication of their intensity. However, the
actual decrease in intensity is five times as great as that shown.
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THE ELECTROMAGNETIC SPECTRUM

Energy Frequency Transitions Radiation Wave Number Wavelength
E (eV) (s−1) (cm−1) (cm)

Nuclear Magnetic Radio
Resonance Waves

Spin Orientations
5×10−6 1.2×109 −in Magnetic Field − 4×10−2 25

Electron Spin Microwaves
Resonance (radar)

3.1×10−3 7.5×1011 −Molecular − 25 4×10−2

Rotations

5×10−2 1.2×1013 − − 400 2.5×10−3

Molecular Infrared
Vibrations Region

0.5 1.2×1014 − − 4×103 2.5×10−4

1.55 3.8×1014 − − 1.25×104 8×10−5

Visible
3.1 7.5×1014 − − 2.5×104 4×10−5

Valence Electronic
Transitions

6.2 1.5×1015 − Ultraviolet− 5×104 2×10−5

1.24×103 3×1017 − − 107 10−7

Inner Shell
Electronic
Transitions X-rays

1.24×104 3×1018 − − 108 10−8

Nuclear Gamma
Transitions Rays

Fig. 1.9 Schematic diagram of the electromagnetic spectrum. Note that the scale is not linear.
Boundaries between regions are somewhat arbitrary
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The explanation for the presence of these additional bands with lower intensity
is that the diatomic molecule is not quite a harmonic oscillator. In a harmonic
oscillator the restoring force (1.2.2) increases indefinitely with increasing distance
from equilibrium. However, it is clear that in the actual molecule, when the atoms
are a great distance from one another, the attractive force decreases and ultimately
approaches zero. The quantum-mechanical oscillator is an approximate model of
a diatomic molecule that is valid only in a limited energy range. To describe the
finer details of vibrating molecules at higher energies (higher incident energies of
electrons in the energy-loss experiment), the anharmonic forces have to be taken
into account. The energy levels of the anharmonic oscillator are not equidistant like
those of the harmonic oscillator, but rather their separation decreases slowly with
increasing n.

The energy levels and absorption spectrum for an anharmonic oscillator that
deviates only slightly from a harmonic oscillator are shown in Fig. 1.10. For the sake
of clarity, ΔE is shown to decrease faster than is actually observed in most cases.
The selection rule (1.5.10), namely, n−m = ±1, holds only approximately for the
anharmonic oscillator and applies only to the most intense transitions. Transitions
with n − m = ±2, ±3, . . . can also appear, although with rapidly decreasing
intensity. All these results can be calculated using perturbation theory, which will
be discussed in Chap. 4.

The experimental facts are discussed here to demonstrate that simple, solvable
quantum-mechanical models such as the harmonic oscillator, the Kepler model of
the hydrogen atom, or the rigid rotor discussed in the next chapter describe only
the principal structures of a microphysical system in nature and cannot be expected
to describe all details. This is not a deficiency of a specific, simple model but is
instead a general property of physical theories: models are idealizations and cannot
be expected to reproduce experimental results with arbitrarily high precision. An

Fig. 1.10 Energy levels and
infrared transitions of an
anharmonic oscillator. The
absorption spectrum is given
schematically in the lower
figure
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actual physical system is understood by its agreement with and its deviation from
these benchmarks. For a more detailed understanding, a finer benchmark is chosen.
Examples of finer benchmarks are an anharmonic oscillator or the combination
of two benchmarks such as a harmonic oscillator that also rotates. More detailed
experimental results often reveal new features of a quantum system. The calculation
of one additional decimal place in an experimental number often requires a new
model and sometimes a completely new theory.

When a spectrometer with sufficiently high resolution is used to study the
transition frequencies in the near infrared region in more detail, the n = 1 line
for CO at about ν = 2140 cm−1 is resolved into many individual, narrow lines as
shown in Fig. 1.11. That is, instead of a single line around ν = 2140 cm−1, there is
instead a band called the vibration-rotation band. The experimental situation for HCl
is similar: the n = 1 line of Fig. 1.5 on page 23 for HCl at about ν = 2890 cm−1

is resolved into many individual, narrow lines as shown in Fig. 1.12. As can be
seen from Fig. 1.11 for CO and Fig. 1.12 for HCl, these bands consist of a
series of almost-equidistant lines with one line missing in the center of the band.
Moving outward from the gap there are two branches: the P-branch is toward longer
wavelengths, and the R-branch is toward smaller wavelengths.

R branch P branch

A
bs

or
pt

io
n

2220 2180 2140 2100 2060 cm–1

Fig. 1.11 The vibration-rotation band of carbon monoxide

Fig. 1.12 The fundamental absorption band for HCl under high resolution. (The lines are doubled
due to the presence of the two isotopes Cl35 and Cl37 in the ratio 3:1; this effect is not discussed
here). [From N. L. Alpert, W. E. Keiser and H. A. Szymanski. Theory and Practice of Infrared
Spectroscopy. Wiley, New York,1970. with permission]
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Such fine structure in the absorption or emission spectra of electromagnetic
radiation for the CO molecule would be expected if the energy levels of the vibrating
molecule of Fig. 1.6 on page 25 were split into a series of sublevels as depicted in
Fig. 1.13 on the following page, which shows the lowest energy levels of the energy
spectrum of the vibrating molecule in Fig. 1.10 on page 53.

The description of such splittings cannot be explained solely by the oscillator
model. Such splittings can only mean that a state characterized by the quantum
number n is not a pure state. Instead it is a mixture of states with different energies
characterized by n and at least one additional quantum number � = 0, 1, 2, . . . .
In the oscillator model the state characterized by n was a pure state described by
a projection operator Λn onto a one-dimensional subspace spanned by ΛnH . The
space of states of the diatomic molecule characterized by the quantum number n

must have at least as many dimensions as energy levels. When the number of energy
levels equals the dimension, then a one-dimensional subspace or a projection onto a
one-dimensional subspace is associated with each value of energy. Consequently,
the oscillator model alone describes only part of the properties of a diatomic
molecule. To describe the finer details of the spectrum, the oscillator model must
be combined with another model that describes these finer details and incorporates
additional features of the diatomic molecule that have not yet been taken into
account.

Classical physics suggests a possible explanation for the finer details in the
spectra of diatomic molecules. The classical picture of the CO molecule is two
atoms with masses m1 and m2 separated by a distance x. This classical object cannot
only perform vibrations along the internuclear axis, but it can also perform rotations
in three-dimensional space around its center of mass. As long as the diatomic
molecule is in the vibrational ground state, that is, as long as the energy involved
is less than 0.265 eV for CO, the molecule is a rigid rotator: it can be considered
to be two point-like masses m1 and m2 fastened to the ends of a weightless, rigid
rod of length x; therefore, the rigid-rotator model can be studied while ignoring
possible oscillations. This analysis will be done in the following chapter, providing
a description of the CO states that are characterized by the quantum number n = 0
and also an approximate description of each set of oscillator states with a given
vibrational quantum number n. In Chap. 3 the oscillator and rotator models are
combined to form the vibrating rotator or the rotating vibrator that provides a
theoretical explanation for the detailed spectrum of the diatomic molecule depicted
in Fig. 1.11 on the facing page and Fig. 1.12 on the preceding page.
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Fig. 1.13 Origin and appearance of rotational structure. P- and R-branches are shown to the left
and right, respectively, on the spectrometer tracing of the CO fundamental absorption band at
2144 cm−1. The Q-branch (dashed line) is missing. Energy levels are shown to scale, except that
the distance between upper and lower vibrational states (2144 cm−1) should be about five times as
great as in the figure. [From R. P. Bauman. Absorption Spectroscopy. Wiley, New York, 1962. with
permission]
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1.6 Summary

A classical harmonic oscillator consists of two mass points with respective masses
m1 and m2 connected by an ideal spring that exerts a force proportional to the
distance stretched from its equilibrium length. Ignoring the energy associated with
the motion of the center of mass, the energy E of a classical harmonic oscillator is

E = 1

2
μ

(
dx

dt

)2

+ 1

2
kx2 ,

1

μ
= 1

m1
+ 1

m2
.

The quantum Hamiltonian is obtained from the classical expression for energy
by replacing the classical expressions for momentum, p = μ dx

dt
, and position

x, respectively, by the quantum mechanical momentum operator P and position
operator Q:

H = P 2

2μ
+ 1

2
kQ2

Requiring that the momentum and position operators satisfy the Heisenberg commu-
tation relations, the eigenvalues En of H are determined using algebraic techniques.
Denoting a normalized eigenvector of H with an eigenvalue En by |En〉, where
H |En〉 = En|En〉, it follows that

En = h̄ω

(

n+ 1

2

)

, ω =
√

k

μ
, n = 0, 1, 2, . . . .

The (dimensionless) lowering and raising operators a and a†, respectively, are given
by

a ≡ 1√
2

(√
μω

h̄
Q+ i√

μωh̄
P

)

, a† ≡ 1√
2

(√
μω

h̄
Q− i√

μωh̄
P

)

,

and were introduced because they satisfy the equations

Ha|En〉 = En−1 a|En〉 , Ha†|En〉 = En+1 a†|En〉 .

From the above equations, if a|En〉 is unequal to zero, it is proportional to |En−1〉.
Similarly, a†|En〉 is proportional to |En+1〉. Including proportionality factors,

a|En〉 =
√

n |En−1〉 , a†|En〉 =
√

n+ 1 |En+1〉 .
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Using the raising operator a†, any normalized eigenvector |En〉 can be obtained
from the eigenvector |E0〉,

|En〉 = 1√
n! (a†)n|E0〉 .

The vibrating diatomic molecule is one such physical system that can be
approximately described as a quantum harmonic oscillator. From energy loss
experiments, for diatomic molecules the energy levels are found to be equally spaced
within a certain range of data. Thus, within this range, diatomic molecules can
be described as quantum harmonic oscillators. For physical systems that can be
described as harmonic oscillators, the dipole operator qQ is most often responsible
for transitions between states.

An ensemble that cannot be further subdivided is called a pure state. It can be
described either by a single vector |En〉 that spans the space or by the projection
operator Λn = |En〉〈En| that projects onto the space. A mixture is an ensemble
that can in principle be subdivided into pure states. If the mixture contains pure
states |En〉, n = 0, 1, 2, . . . , N , the mixture is described by the statistical or density
operator ρ defined by

ρ =
N
∑

n=0

wnΛn =
N
∑

n=0

wn|En〉〈En| ,

where wn is the probability of obtaining the value En. The expectation value of an
operator A in the state characterized by ρ is

< A >ρ= Tr ρA .

For the special case where the ensemble is in a pure state eiω|Em〉, the density
operator ρ = Λm. Thus, from the above equation,

< A >ρ=Λm= Tr AΛm = 〈Em|A|Em〉 ,

which is the usual result for the expectation value of an operator in a pure state.
The mathematical quantity < A >ρ that is calculated from the theory corre-

sponds to the average value 〈A〉 that is measured in experiments,

< A >ρ= Tr(Aρ) �< A >≡
∑

n

Nn

N
an .
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Similarly, the mathematical quantity ΔρA calculated from the theory corresponds
to the root-mean-square deviation Δa that is measured in experiments,

ΔρA =
√

Tr(ρA2)− (Tr(ρA))2 � Δa =
√
√
√
√
∑

i

Nia
2
i

N
− (

∑

i

Niai

N
)2.

Statistics cannot in principle be eliminated from quantum mechanics: the outcome
of the measurement of an observable is, in general, uncertain. For a quantum
“particle”, the uncertainty in its momentum ΔP and uncertainty in his position ΔQ

satisfy

ΔP ΔQ ≥ h̄

2
.

The above equation is known as the Heisenberg uncertainty relation and reveals
that it is impossible to simultaneously know both the position and momentum with
arbitrary precision.

A diatomic molecule comprised of two unlike atoms has an electric dipole
moment. When the molecule oscillates, the charges that comprise the dipole
moment are accelerated and, therefore, emit electromagnetic radiation. The average
power radiated by a dipole as it makes a transition from the state |Em〉 to |En〉 is

Rnm =
ω4

γ q2

3πε0c3 |〈En|Q|Em〉|2 .

Because the dipole operator has non-zero matrix elements only between neighboring
energy states, all transitions caused by the dipole operator are from the original
energy state to one of the two adjacent states. This is called the selection rule for
dipole transitions.

When a harmonic oscillator interacts with blackbody radiation, three transitions
occur: spontaneous emission, induced emission and spontaneous absorption. For the
transition Om → On + γ , the Einstein coefficient Amn is the probability per unit
time of spontaneous emission and is given by

Amn =
ω3

γ q2

3πε0c3h̄
|〈En|Q|Em〉|2 .

The number of oscillators undergoing spontaneous emission per unit time is
NmAmn, where Nm is the number of oscillators in the state |Em〉. The probability per
unit time of an oscillator undergoing induced emission is proportional to the density
of radiation u(ω) at the angular frequency ω = (Em − En)/h̄. The proportionality
constant is defined to be the Einstein coefficient Bmn. Thus the number of oscillators
undergoing induced emission per unit time is Nmu(ω)Bmn. Finally, the probability
per unit time of an oscillator undergoing spontaneous absorption is proportional to
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the density of radiation u(ω) at the angular frequency ω = (Em − En)/h̄. The
proportionality constant is defined to be the Einstein coefficient Bnm, so the number
of oscillators undergoing spontaneous absorption per unit time is Nnu(ω)Bnm. At
equilibrium the number of oscillators undergoing emission per unit time must equal
the number of oscillators undergoing absorption per unit time, which is satisfied if

Bnm = Bmn = π2c3

h̄ω3 Amn .

In the energy range where diatomic molecules can be described as harmonic
oscillators, vibrating diatomic molecules emit or absorb electromagnetic radiation
only with a single frequency. In addition, much weaker bands are observed that
are caused by anharmonic forces. Finally, when the experimental resolution is
increased, the single band that results from the harmonic force is found to consist of
many equally-spaced bands.

Problems

For Sect. 1.2

1.1 Using the definitions for a and a† in (1.2.16) and the Heisenberg commutation
relations (1.2.11), derive (1.2.19) where N = a† a.

1.2 Using the definitions for a and a† in (1.2.16) and the Heisenberg commutation
relations (1.2.11), derive (1.2.20).

1.3 Using the definition N = a† a, and (1.2.20), verify (1.2.25a) and (1.2.25b).

1.4 Verify that if a and a† satisfy [a, a†] = 1 and if N is defined by N = a†a, then
a, a†, and N satisfy the following two equations:

[N, (a)m] = −m(a)m , [N, (a†)m] = m(a†)m , m = integer ≥ 0 .

1.5 Calculate the matrix element 〈En|P |Em〉.
1.6

(a) Calculate the two matrix elements 〈En|Q|En〉 and 〈En|P |En〉.
(b) Calculate the two matrix elements 〈En|Q2|En〉 and 〈En|P 2|En〉.
(c) Check your answers in (b) for consistency by using them to evaluate the matrix

element of the Hamiltonian H = 1
2μ

P 2 + k
2Q2 between states |En〉.

1.7 Calculate the matrix element 〈En|Q2|Em〉.
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1.8 Find the energy levels of the one-dimensional Hamiltonian,

H = 1

2μ
P 2 + 1

2
kQ2 + k11 ,

where k1 is a constant.

1.9 Consider the one-dimensional Hamiltonian,

H = 1

2μ
P 2 + 1

2
kQ2 + k1Q+ k21 ; μ, k, k1, k2 = constants .

(a) Show that H can be rewritten in the form

H = 1

2μ
P 2 + 1

2
kQ′2 + k31 ,

where Q′ = Q+ k4 1. Express the constants k3 and k4 in terms of k, k1, and k2.
(b) Calculate the commutator [Q′, P ].
(c) Explain why the results from the analysis of the harmonic oscillator can now be

used to solve the problem by making the substitution Q → Q′ .
(d) What are the energy levels En of H ?
(e) Express the energy eigenstate |En〉 of H in terms of the operators P and Q′ and

the ground state |E0〉.
1.10 Using the fact that the Hamiltonian is self-adjoint, show that 〈En|Em〉 = 0 for
n �= m. Hint: Obtain two expressions for the matrix element 〈En|H |Em〉.
1.11 Using the expression for |n〉 = |En〉 given in (1.2.48), derive (1.2.50).

For Sect. 1.3

1.12 Verify that the operator Λn = |En〉〈En| possesses the following properties
that characterize a projection operator:

(a) Λ
†
n = Λn

(b) ΛnΛn = Λn

(c) ΛnΛm = 0 for n �= m

1.13 Let ψ and φ be normalized vectors satisfying 〈ψ|φ〉 = 0.

(a) Calculate ΛψΛφ where Λψ ≡ |ψ〉〈ψ| and Λφ ≡ |φ〉〈φ|.
(b) Calculate the probability of observing the state ψ in the mixture

ρ = λΛψ + (1− λ)Λφ, 0 < λ < 1.
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1.14 Consider a mixture of quantum harmonic oscillators in states |E0〉 and |E1〉.
Let λ and 1 − λ, 0 < λ < 1, be the respective probabilities that an oscillator is in
the state |E0〉 or |E1〉.
(a) Construct the statistical operator ρ for this mixture.
(b) Calculate 〈H 〉 and 〈Q〉.
(c) Make the incorrect assumption that this mixture is described by the normalized

vector,

Ψ = √λ |E0〉 +
√

1− λ |E1〉 ,

and that the expectation value of an operator A in this mixture is given by
〈Ψ |A|Ψ 〉. Calculate 〈Ψ |H |Ψ 〉 and 〈Ψ |Q|Ψ 〉.

(d) For what values of λ does the expectation value 〈Q〉 actually equal 〈ψ|Q|ψ〉?
Explain why this result was to be expected.

1.15 For a linear operator A on the state ρ,

ρ =
∞
∑

n=0

wn|En〉〈En| ,

show that Tr(Aρ) = Tr(ρA)

For Sect. 1.4

1.16 The energy-loss spectrum of a vibrating H2 molecules shown in Fig. 1.14 on
the facing page has two peaks, one at 0 and the second at 0.52 eV with respective
intensities of 3.5 and 7.8× 1/(30) = 0.26 in arbitrary units. What is the statistical
operator ρ for the ensemble of H2 molecules?

1.17 Show that when ρ = Λφ = |φ〉〈φ| is the statistical operator for a pure state,
then the result for ΔφA as given by (1.4.10) is identical to (1.4.9).

1.18 For the state ρ = λ|En〉〈En| + (1 − λ)|Em〉〈Em|, 0 < λ < 1, m �= n,
calculate ΔρH and verify that it is not zero.

1.19 For the state ρ given in (1.3.11) calculate

(a) ΔρQ

(b) and ΔρP .
(c) Restricting to the case wn = 1, calculate ΔpΔx .

1.20 Explain why the Heisenberg uncertainty principle would be violated if the
zero-point energy of the harmonic oscillator were zero.
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Fig. 1.14 Energy-loss
spectrum of H2. [From G. J.
Schultz, Phys. Rev. 135,
A988,1964. with permission]
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For Sect. 1.5

1.21 The vibrating HCl molecule emits infrared radiation with wavelength λ =
3.46× 10−6 m.

(a) What is the ground state energy of the vibrating HCl molecule?
(b) What are the next three energy levels?

1.22 The transition probability for quadrupole transitions in a harmonic oscillator
is proportional to the square of the magnitude of the matrix element 〈En|Q2|Em〉.
What are the selection rules for quadrupole transitions?

1.23

(a) Show that Rnm has units of energy/time.
(b) Show that the Einstein coefficient Anm has units of 1/time.
(c) Show that the Einstein coefficient Bnm multiplied by the energy density per

angular frequency u(ω) has units of 1/time.

1.24 From the formula for Bmn in (1.5.30), show that Bmn = Bnm.
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1.25 Using the explicit expressions for Amn and Bmn, show that (1.5.25) is satisfied.

1.26 Answer the following questions about the CO molecule:

(a) What is its reduced mass μ?
(b) Using En+1 − En = 0.265 eV, calculate the “spring constant” k.
(c) What is the classical value of the square of the amplitude A2 when the CO

molecule is in the state |En〉?
(d) What is the expectation value of Q2 in the state |En〉?



Chapter 2
Angular Momentum

2.1 Introduction

The diatomic molecule, which was considered in the previous chapter as an
important example of a physical system that can be described as a harmonic
oscillator, not only vibrates, but also rotates. The Hamiltonian H of a rotating
diatomic molecule, which is the generator of time translations, commutes with all
the position operators Qi , the momentum operators Pi and the angular momentum
operators Ji . These operators are generators of an algebra of observables. In this
chapter attention is initially restricted to the subalgebra of the angular momentum
operators Ji , the generators of the rotation group.

In Sect. 2.2 the quantum formula for orbital angular momentum is conjectured
from the form of the classical formula. The Hamiltonian of a rotating, rigid dumb-
bell is similarly found. The representations of the algebra of angular momentum are
determined in Sect. 2.3. In Sect. 2.4 the rotating diatomic molecule is discussed.
While vibrations yield energy spectra with changes ΔEvibration ≈ 10−1 eV, for
rotations the changes in energy are much smaller, ΔErotation ≈ 10−3 eV. In Sect. 2.5
the calculation of probabilities in angular momentum states is considered, and in
Sect. 2.6 the relationship between SO(3) and SU(2) is briefly discussed.

2.2 Introduction to Angular Momentum

In classical physics a mass point is a physical system characterized by one system
parameter, the mass m, and two physical variables, the momentum p and the
position x, both of which are measured with respect to a reference position usually
denoted 0.

© Springer Nature B.V. 2019
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Fig. 2.1 The position vector
x and momentum vector p for
a mass-point m

p

m

O

x

The classical orbital angular momentum l is defined in terms of these two
physical variables (Fig. 2.1),

l = x× p . (2.2.1)

According to the correspondence principle, the quantum mechanical orbital angular
momentum L of a quantum mechanical mass point is

L = Q× P, (2.2.2)

where Q is the position operator, and P is the momentum operator. In component
form,

Lx = QyPz −QzPy, (2.2.3a)

Ly = QzPx −QxPz, (2.2.3b)

Lz = QxPy −QyPx. (2.2.3c)

Introducing the permutation symbol1 εijk defined by

εijk ≡

⎧

⎪⎪⎨

⎪⎪⎩

1 for every even permutation of i, j and k,

−1 for every odd permutation of i, j and k,

0 if any two of the indices i, j, and k have the same value,
(2.2.4)

all three equations (2.2.3) can be written compactly as the single equation,

Li =
3
∑

j,k=1

εijkQjPk = εijkQjPk . (2.2.5)

1Also known as the Levi-Civita symbol or antisymmetric symbol.
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For notational convenience summation symbols are often omitted with the under-
standing that any repeated index such as j and k in the above equation are to be
summed over the range of the index. The final line in (2.2.5) adopts this notation.

From (2.2.4), ε123 = 1. Then, for example, ε213 = −1 because there has been a
single permutation of the “2” and the “1”. Also, for example, ε312 = 1 because
there have been two permutations: First the “3” and the “2” were permuted to
yield ε132 and then the “3” and the “1” were permuted to yield ε312. By using the
permutation symbol, as many as nine equations can be written as a single equation,
and calculations are often greatly simplified.

The commutation relations for the operators Li can be calculated from the
three-dimensional generalization of the canonical commutation relations for the
momentum and position operator (1.2.11), namely,

[Pi,Qj ] = h̄

i
δij 1, [Pi, Pj ] = 0, [Qi,Qj ] = 0, i, j = x, y, z, or 1, 2, 3.

(2.2.6)

Orbital angular momentum can be defined by L = Q × P or , equivalently, by
L = −P×Q. To see that the two expressions are identical, for the x-component of
L note from (2.2.6) that QyPz = PzQy and QzPy = PyQz. Then from (2.2.3a),
the detailed calculation in terms of components is as follows:

Lx = (Q× P)x = QyPz −QzPy = (PzQy − PyQz)

= −(PyQz − PzQy) = −(P×Q)x (2.2.7)

Although the order in which the operators P and Q appear in the definition of orbital
angular momentum is irrelevant, this is not the case when a quantum mechanical
operator is defined in terms of two operators that do not commute.

As Qi and Pj are hermitian, it follows that Li is hermitian. For example
using (2.2.3a),

L†
x = (QyPz −QzPy)† = P †

z Q†
y − P †

y Q†
z = PzQy − PyQz. (2.2.8)

But, as was just mentioned, from the Heisenberg commutation relation (2.2.6)
PzQy = QyPz and PyQz = QzPy . Therefore,

L†
x = QyPz −QzPy = Lx. (2.2.9)

In a similar fashion Ly and Lz can be shown to be hermitian.
The commutation relations between Lx , Ly and Lz follow from the definition of

L and the Heisenberg commutation relations (2.2.6). For example,

[Lx,Ly ] = [QyPz −QzPy,QzPx −QxPz]
= [QyPz,QzPx] − [QyPz,QxPz] − [QzPy,QzPx ] + [QzPy,QxPz].

(2.2.10)
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The second and third commutators are zero because all operators involved commute.
In the first and fourth commutators only Pz and Qz don’t commute. Thus

[Lx,Ly ] = QyPx [Pz,Qz] +QxPy[Qz,Pz]. (2.2.11)

Using the Heisenberg commutation relation (2.2.6),

[Lx,Ly ] = ih̄(QxPy −QyPx) = ih̄Lz, (2.2.12a)

In a similar fashion the remaining two commutation relations are obtained,

[Ly,Lz] = ih̄Lx, (2.2.12b)

[Lz,Lx ] = ih̄Ly. (2.2.12c)

Note that (2.2.12b) can be obtained from (2.2.12a) by making the substitution x →
y, y → z, z → x, and (2.2.12c) can be obtained from (2.2.12b) by making the same
substitution. The substitution x → y, y → z, z → x is called “cyclically permuting
the indices”.

The three equations (2.2.12) can be written in the compact form

[Li,Lj ] = ih̄ εijkLk , (2.2.13)

where εijk is defined in (2.2.4).
The commutation relations (2.2.13) for the orbital angular momentum of a mass

point have been derived from the Heisenberg commutation relations (2.2.6). The
orbital angular momentum L = Q×P of the center of mass of a quantum mechanical
rigid body will also fulfill (2.2.13) because, by the correspondence principle, the
center of mass position x → Q and the center-of-mass momentum p = Mẋ →
P. That is, the classical center-of-mass position and center-of-mass momentum are
replaced by the corresponding quantum operators. The operators Q and P fulfill the
Heisenberg commutation relations because they represent, respectively, the position
and momentum of the center of mass.

Classical extended objects can also possess a second type of angular momentum
called spin: spin angular momentum s results from rotational motion about the
center of mass while orbital angular momentum l results from motion of the center
of mass about a fixed point. The total classical angular momentum j is then given
by

j = l+ s. (2.2.14)

From the correspondence principle, the above equation is also valid for quantum
mechanical systems provided the classical quantities are replaced by the correspond-
ing quantum operators,

J = L+ S, (2.2.15)
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where J and S are, respectively, the quantum mechanical operators for total angular
momentum and spin angular momentum.2

2.2.1 Rigid Dumbbell as a Model of a Rotating Diatomic
Molecule

A simple example of a physical system with rotational degrees of freedom is the
rigid dumbbell. The classical picture of a dumbbell is two mass points m(1) and
m(2) at opposite ends of a massless rod. A dumbbell represents a diatomic molecule,
which is a quantum system. The two mass points are the nuclei of the two atoms that
make up the diatomic molecule, and the massless rod along the internuclear axis
represents the atomic (electromagnetic) forces that keep the two nuclei at a fixed
distance from each other.

If sufficient energy is supplied to a diatomic molecule, the molecule can vibrate
as well as rotate, implying that it is no longer a rigid rotator. Then the rigid rod
instead acts like a rotating spring connecting the two masses, and the molecule
both vibrates and rotates, thus becoming a vibrating rotator. If even more energy is
supplied, single electrons will perform transitions between electronic energy levels.
As increasing energy is supplied, new degrees of freedom are manifest.

The rigid rotator model of the diatomic molecule is valid for energies in the
infrared region that are incapable of inducing transitions to excited vibrational
or excited electronic states. It is an empirical fact that only rotational degrees of
freedom can be excited at energies below about 10−2 eV so attention is initially
restricted to the rigid dumbbell.

The algebra of the quantum mechanical observables for the rigid dumbbell is
conjectured from correspondence to the observables for the classical, rigid rotator.
First the relationship between energy and angular momentum is derived. Then the
classical-quantum correspondence is used to obtain the quantum Hamiltonian.

Since only rotations about the center of mass are considered, the center of mass
is assumed to be fixed at the origin, and the positions of the point masses m(1) and
m(2) are measured from the center of mass. Thus it is convenient to measure the
motion of the molecule in its center-of-mass frame. The position vectors x(1) and
x(2) for masses m1 and m2, respectively, are shown in Fig. 2.2 on the next page.

The total energy E of the two particles is the sum of the kinetic energies of each,

E = 1

2
m(1)

[

dx(1)

dt

]2

+ 1

2
m(2)

[

dx(2)

dt

]2

. (2.2.16)

2In quantum mechanics spin is an intrinsic property of a particle, unrelated to any sort of motion
in space.
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Fig. 2.2 The position vectors
x(1) and x(2) for masses m(1)

and m(2), respectively, and
the vector r = x(1) − x(2),
which is the position of m(1)

with respect to m(2), for a
rigid diatomic molecule

r

m

m (2)

x (2)

(1)x

x

z

y

l
(1)

The angular momentum l of the dumbbell about the center of mass is the sum of the
orbital angular momenta of the two mass points:

l = l(1) + l(2) = x(1) ×m(1) dx(1)

dt
+ x(2) ×m(2) dx(2)

dt
. (2.2.17)

It is convenient to express the energy E and angular momentum l in terms of the
vector

r = x(1) − x(2), (2.2.18)

depicted in Fig. 2.2. This is accomplished by first expressing x(1) and x(2) in terms
of r and xCM = 0.

Example 2.2.1 Find the center of mass xCM of the diatomic molecule depicted in
Fig. 2.2, but do not assume that the center of mass is at the origin. Express the
vectors x(1) and x(2) in terms of m(1), m(2), r and xCM.

Solution The center of mass xCM is calculated from the equation

xCM =
∑N

i=1 m(i)x(i)

∑N
i=1 m(i)

= m(1)x(1) +m(2)x(2)

m(1) +m(2)
. (2.2.19)

Solving the simultaneous linear equations (2.2.18) and (2.2.19) for x(1) and x(2)

yields,

x(1) = xCM + m(2)

m(1) +m(2)
r , x(2) = xCM − m(1)

m(1) +m(2)
r . (2.2.20)
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Choosing the coordinate system depicted in Fig. 2.2 on the facing page with
the center of mass at the origin, implying that xCM = 0, and using the expres-
sions (2.2.20), the formula for energy (2.2.16) can be rewritten in terms of r,

E = 1

2
m(1)

[

m(2)

m(1) +m(2)

dr
dt

]2

+ 1

2
m(2)

[

− m(1)

m(1) +m(2)

dr
dt

]2

= 1

2
μ

[
dr

dt

]2

,

(2.2.21)

where μ is the reduced mass

μ = m(1)m(2)

m(1) +m(2)
. (2.2.22)

In a similar calculation the orbital angular momentum l as given in (2.2.17) can
also be expressed in terms of r,

l = m(2)

m(1) +m(2)
r×m(1)

[

m(2)

m(1) +m(2)

dr
dt

]

− m(1)

m(1) +m(2)
r×m(2)

[

− m(1)

m(1) +m(2)

dr
dt

]

= μr× dr
dt

. (2.2.23a)

or

li = μεijkrj
drk

dt
. (2.2.23b)

With the aid of the identity3

εijkεimn = δjmδkn − δjnδkm , (2.2.24)

and the fact that the motion is purely rotational so that r · dr
dt
= 0,

li li = l2 = μ2
[

(r · r)(dr
dt
· dr

dt
)− (r · dr

dt
)2
]

= μ2r2
(

dr

dt

)2

. (2.2.25)

The moment of inertia I about the center of mass is defined by

I = m(1)[x(1)]2 +m(2)[x(2)]2. (2.2.26)

3Multiplying (2.2.24) by AjBkAmBn yields the vector identity

(A× B) · (A× B) = (A · A)(B · B)− (A · B)2.



72 2 Angular Momentum

If, for example, the diatomic molecule is HCl, then m(1) = mH and m(2) = mCl.
Using (2.2.20) and recalling that xCM = 0,

I = m(1)

(

m(2)

m(1) +m(2)
r

)2

+m(2)

(

− m(1)

m(1) +m(2)
r

)2

= μr2. (2.2.27)

Equations (2.2.25) and (2.2.27) allow the expression (2.2.21) for energy to be
written in the desired form,

E = l2

2I
. (2.2.28)

To obtain the mathematical theory for the rigid, quantum dumbbell, the funda-
mental classical observables are replaced by the corresponding quantum operators:

Classical Quantum

Energy E −→ Hamiltonian operator H , (2.2.29a)

dumbbell axis r −→ position operator Q , (2.2.29b)

angular momentum l −→ angular momentum operator L . (2.2.29c)

The relationships among the quantum operators correspond to the classical relation-
ships. Replacing the classical quantities with the corresponding quantum operators
as indicated in (2.2.29), it follows from (2.2.28) that the Hamiltonian of the quantum
rotator is

E = l2

2I
−→ H = L2

2I
. (2.2.30)

The classical observables l and r are replaced by the quantum operators L and Q,
respectively, that fulfill the relations,

[Qi,Qj ] = 0 , [Li,Lj ] = ih̄εijkLk , [Li,Qj ] = ih̄εijkQk .

(2.2.31)

The first of the above relations was postulated in (2.2.6), the second equation
is (2.2.13), and the third equation is readily derived from (2.2.5) and (2.2.6). (See
Problem 2.2.)

If the dumbbell molecule is rigid, implying that the molecule does not vibrate,
the length r of the internuclear axis (2.2.18) must be constant:

Q2 ≡ QiQi = r2 = constant. (2.2.32)
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Using (2.2.5), it follows that

Q · L = QiLi = εijkQiQjPk . (2.2.33)

Using εijk = −εjik and (2.2.6), which implies that QiQj = QjQi ,

Q · L = −εjikQjQiPk . (2.2.34)

Making the change i → j, j → i in the summation indices, the above equation
becomes Q · L = −εijkQiQjPk = −Q · L. Therefore,

Q · L = 0 . (2.2.35)

Equation (2.2.35) reveals that for the quantum dumbbell consisting of two mass
points that do not have any intrinsic angular momentum (spin), the operator Q
for the internuclear distance is orthogonal to the angular momentum operator L.
Therefore, the quantum mechanical observables Qi and Li describing a rigid,
quantum dumbbell consisting of two spinless mass points fulfill the two relations,

Q2 = r2 = constant, Q · L = 0 . (2.2.36)

In Fig. 2.2 on page 70, which depicts the analogous classical system, the internu-
clear distance r is orthogonal to the orbital angular momentum l.

2.3 Representations of the Algebra of Angular Momentum
E (SO(3))

In (2.2.2) the orbital angular momentum operators L were defined in terms of the
position operator Q and the momentum operator P. With the aid of the Heisenberg
commutation relations (2.2.6), it was then possible to calculate the commutation
relations (2.2.13) for the Li . However, for an extended object, in addition to the
orbital angular momentum Li about a fixed point, there are other angular momentum
operators. The fundamental conserved quantity is the total angular momentum
Ji . The Ji cannot be defined in terms of Pi and Qi , but since they are angular
momentum operators, they are defined as the linear, self-adjoint operators that obey
the relations

[Ji, Jj ] = ih̄ εijkJk . (2.3.1)

The above relation identifies the angular momentum operators Ji as the generators
of the group of rotations in three-dimensional space. The operators Pi , Qi , and
the Hamiltonian H are also generators of a group of motions, the Galilei group
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that is the group of motions in non-relativistic, three-dimensional space-time. The
angular momentum operators are the generators of three-dimensional rotations in a
subgroup of the Galilei group. The commutation relations (2.3.1) are a consequence
of the property of the three-dimensional space as are the commutation relations of
all the operators Pi , Qi , H and Ji .

General angular momentum operators are defined to be the linear, self-adjoint
operators Ji = J

†
i that fulfill (2.3.1). Their properties are derived from the

commutation relations (2.3.1). Since quantum mechanical observables are operators
in a linear, scalar-product space H or Φ, the objective of the derivation is to find
all possible spaces and the properties of the linear operators Ji in these spaces.

The operator

JiJi ≡ J2 = J 2
1 + J 2

2 + J 2
3 , (2.3.2)

is the square of the total angular momentum and has the property (See Problem 2.3.)

[J2, Ji ] = 0 . (2.3.3)

Allowed values of angular momentum are determined for those Ji acting in spaces
that have at least one eigenvector |c〉 of the operator J2 for which

J2|c〉 = h̄2c|c〉 . (2.3.4)

It is possible to choose a vector |c〉 in these spaces such that it is an eigenvector of
both J2 and a second operator J̃ , which is a linear combination of the three Ji . This
eigenvector of both J2 and J̃ is denoted |c,m〉 and satisfies

J2|c,m〉 = h̄2c|c,m〉 , (2.3.5a)

and

J̃ |c,m〉 = h̄m|c,m〉 . (2.3.5b)

As a result of the factor of h̄ in (2.3.1), which occurred because of the factor of h̄

in (2.2.6) that lead to the factors of h̄ in (2.2.31), angular momentum is measured in
units of h̄. Powers of h̄ are included in (2.3.5a) and (2.3.5b) so that the parameters c

and m are dimensionless.
The quantity h̄2c is called the eigenvalue of J2 and h̄m is called the eigenvalue

of J̃ . If an operator J̃ exists, then, in general, the eigenvalue c will not uniquely
specify the vector because the eigenvalue m is also required. Thus the desire to
uniquely specify eigenvectors forces a search for an operator J̃ . To determine the
relationship between J2 and J̃ , the commutator [J2, J̃ ] is applied to |c,m〉, and
then (2.3.5a) and (2.3.5b) are used:

[J2, J̃ ]|c,m〉 = J2J̃ |c,m〉 − J̃J2|c,m〉
= J2h̄m|c,m〉 − J̃ h̄2c|c,m〉 = h̄3(cm− cm)|c,m〉 = 0 . (2.3.6)
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Therefore, if |c,m〉 is an eigenvector of both J2 and J̃ , the two operators must
commute when acting on any vector |c,m〉.

Because J2 commutes with Ji , J̃ can be chosen to be the component of J along an
arbitrary unit vector n̂ in three-dimensional space, J̃ = n̂ · J. It is customary to call
the direction of n̂ the three-direction so that n̂ = e3 and J̃ = n̂ · J = e3 · J = J3. As
a consequence, |c,m〉 is chosen to be an eigenstate of the component of J called J3,

J2|c,m〉 = h̄2c|c,m〉 , (2.3.7a)

J3|c,m〉 = h̄m|c,m〉 . (2.3.7b)

When rotational symmetry is destroyed by introducing an external electric or
magnetic field, for example, a specific direction in space has significance. Under
these circumstances it is often convenient to choose e3 in the direction of the
external field. Otherwise the direction of e3 is arbitrary.

If a third operator existed that was linearly independent of J2 and J3 and also
commuted with both operators, then the eigenvalue of this third operator would
also be required to uniquely specify the eigenvector. However, no such operator
can be constructed from just the Ji so the eigenvectors are completely specified
by the eigenvalues c and m. Because the operators J2 and J3 are self-adjoint, the
parameters c and m are real.

The set of operators

A = a0 +
3
∑

i=1

aiJi +
3
∑

i=1

3
∑

j=1

aij JiJj + . . . ai, aij , · · · ∈ C , (2.3.8)

forms an algebra of linear operators as discussed in Sect. A.3 on page 320 of the
Appendix. The algebra of all operators of the form (2.3.8) generated by the Ji is
called the enveloping algebra of the rotation group SO(3) and is denoted E (SO(3)).

Since J2 commutes with all the operators Ji , it follows that J2 also commutes
with all A:

[A, J2] = 0 for all A ∈ E (SO(3)) (2.3.9)

From (2.3.9) it follows that there exists no A ∈ E (SO(3)) that changes the value of
c. This can be shown by applying [J2, A] = 0 to the vector |c,m〉:

J2A|c,m〉 = AJ2|c,m〉 = h̄2cA|c,m〉 (2.3.10)

From the first and last term in (2.3.10), it follows that the vector A|c,m〉 is again
an eigenvector of J2 with the same eigenvalue h̄2c. This means that the set of all
vectors {ψc = A|c,m〉} where A ∈ E (SO(3)) (i.e. where A is any operator of
the form (2.3.8) with arbitrary coefficients a0, aj , aij , · · · ∈ C) is again a set of
eigenvectors of J2 with the same eigenvalue c, J2ψc = cψc.
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There are operators that don’t commute with J3 and thus change the eigenvalue
h̄m of J3. An operator Ω is now sought that transforms an eigenvector |c,m〉 of J3
with eigenvalue h̄m into an eigenvector of J3 with eigenvalue h̄(m + λ). Such an
operator must satisfy the relation

J3Ω |c,m〉 = h̄(m+ λ)Ω |c,m〉 , (2.3.11)

and will make it possible to construct the eigenvectors |c,m + λ〉, |c,m + 2λ〉 etc.
from the eigenvector |c,m〉. Multiplying (2.3.7b) by Ω ,

ΩJ3|c,m〉 = h̄mΩ |c,m〉 , (2.3.12)

and then subtracting the result from (2.3.11) yields

[J3,Ω]|c,m〉 = h̄λΩ |c,m〉 . (2.3.13)

The above equation is satisfied if J3 and Ω satisfy the operator relation

[J3,Ω] = h̄λΩ . (2.3.14)

If the operator Ω is a linear function of the Ji , it must be of the form Ω =
J1 + αJ2 + βJ3 where α and β are constants and the coefficient of J1 has been set
equal to unity for convenience. Using the commutation relations (2.3.1), Eq. (2.3.14)
implies

ih̄J2 − ih̄αJ1 = h̄λ(J1 + αJ2 + βJ3) , (2.3.15)

or

0 = h̄(λ+ iα)J1 + h̄(λα − i)J2 + h̄λβJ3 . (2.3.16)

Since the Ji are linearly independent, it is not possible to express one operator in
terms of the other two, implying that the above equation can only be satisfied if the
coefficient of each Ji vanishes independently. Thus

0 = λ+ iα , 0 = λα − i , β = 0 . (2.3.17)

The first equation in (2.3.17) implies λ = −iα. Substituting this expression for
λ into the second equation in (2.3.17) yields the two solutions to (2.3.17):

α = i , λ = 1 , (2.3.18a)

α = −i , λ = −1 . (2.3.18b)
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The operators corresponding to the above two solutions are, respectively,

Ω |α=i = J1 + iJ2 ≡ J+ , (2.3.19a)

Ω |α=−i = J1 − iJ2 ≡ J− . (2.3.19b)

Because J1 and J2 are hermitian, it follows that the operators J± satisfy

J
†
± = J

†
1 ∓ iJ

†
2 = J1 ∓ iJ2 = J∓ . (2.3.20)

Alternatively, spherical components J0 and J±1 of the angular momentum vector
operator are sometimes used. These operators are defined in terms of the Ji that
fulfill (2.3.1):

J0 ≡ J3 , (2.3.21a)

J±1 ≡ ∓ 1√
2
(J1 ± iJ2) . (2.3.21b)

The spherical components of angular momentum fulfill the relations

J
†
±1 = −J∓1, J

†
0 = J0 . (2.3.22)

From (2.3.11) and (2.3.19a), when λ = 1 in (2.3.18a), the operator J+ = J1+iJ2
increases the three-component of the angular momentum by one unit of angular
momentum h̄ and is therefore called a raising operator. Similarly J− = J1 − iJ2
decreases the three-component of the angular momentum by h̄ and is called a
lowering operator.

From the algebraic solution of the angular momentum, it was possible to guess
that the operators that change the three-component of angular momentum are non-
hermitian. In fact J+ and J− are analogous to the operators a† and a of the harmonic
oscillator in that J+ and a† are both raising operators and J− and a are both lowering
operators. From (2.3.1) and (2.3.19) it immediately follows that

[J3, J±] = ±h̄J± . (2.3.23)

The allowed values of the eigenvalues c and m can now be determined. Because
the eigenvalue c is fixed, a constraint is placed on the values that m can take. Using
the Hermiticity of Ji , Ji = J

†
i ,

〈c,m|J 2
1 + J 2

2 |c,m〉 = 〈c,m|J 2
1 |c,m〉 + 〈c,m|J 2

2 |c,m〉
= (J1|c,m〉, J1|c,m〉)+ (J2|c,m〉, J2|c,m〉) ≥ 0 . (2.3.24)

The inequality follows because the scalar product of any vector |d〉 satisfies
(|d〉, |d〉) ≡ 〈d|d〉 ≥ 0. Thus from (2.3.24) it follows that the expectation value
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(or eigenvalue) of the operator J 2
1 + J 2

2 is equal to or greater than zero. Allowing
J 2

1 + J 2
2 to act on the vector |c,m〉,

(J 2
1 + J 2

2 )|c,m〉 = (J 2
1 + J 2

2 + J 2
3 − J 2

3 )|c,m〉 = (J2 − J 2
3 )|c,m〉

= h̄2(c −m2)|c,m〉 . (2.3.25)

Comparing (2.3.24) and (2.3.25) yields the constraint (c − m2) ≥ 0. To avoid
violating this inequality, there must be a maximum and minimum value of m,
denoted, respectively, by mmax and mmin. Note that this conclusion followed from
the Hermiticity of Ji . This means that there exists no eigenvector of J3 with an
eigenvalue larger than mmax or smaller than mmin, i.e.,

J+|c,mmax〉 = 0 , (2.3.26a)

J−|c,mmin〉 = 0 . (2.3.26b)

Using the easily derived relation (Problem 2.4),

J±J∓ = J2 − J 2
3 ± h̄J3 , (2.3.27)

and allowing J− and J+ to act on (2.3.26a) and (2.3.26b), respectively,

0 = J−J+|c,mmax〉 = h̄2(c −m2
max −mmax)|c,mmax〉 , (2.3.28a)

0 = J+J−|c,mmin〉 = h̄2(c −m2
min +mmin)|c,mmin〉 . (2.3.28b)

Equations (2.3.28a) and (2.3.28b) imply

c = m2
max +mmax = m2

min −mmin , (2.3.29)

or

(mmax +mmin)(mmin −mmax − 1) = 0 . (2.3.30)

Now mmin − mmax ≤ 0, so the second term in (2.3.30) is unequal to zero. As a
consequence the only solution is

mmax = −mmin ≡ j , (2.3.31)

where mmax is now denoted by j . From (2.3.29) it then follows that

c = j (j + 1) . (2.3.32)
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Instead of labeling eigenvectors by c, they will now be labeled by j , which is called
the angular momentum quantum number.

What are the allowed values for j? The parameter mmax = j , and the lowering
operator Ĵ− decreases m in integer increments until it has a value mmin = −j . Since
the lowering operator must be applied n times to transform |j,mmax〉 into |j,mmin〉
then

mmax − n = mmin . (2.3.33)

Combining the above equation with (2.3.31), it follows that j = n/2. That is, j can
take any integer or half-integer values. For a specific value of j , the allowed values
of m are

m = j, j − 1, j − 2, . . . ,−j + 1,−j . (2.3.34)

Thus for every integer or half-integer value j , there exists a set of (2j + 1)

eigenvectors with the property

J2|j,m〉 = h̄2j (j + 1)|j,m〉, J3|j,m〉 = h̄m|j,m〉 . (2.3.35)

The Ji act in the (2j + 1)-dimensional space spanned by the ψj ,

{ψj =
m=j
∑

m=−j

am|j,m〉, am ∈ C} , (2.3.36)

where the am = 〈j,m|ψj 〉 are the expansion coefficients or components of the
vector ψj .

In Table 2.1 allowed values of m are given for various values of j . When j = 2,
for example, the allowed values of m are displayed in Fig. 2.3 on the following
page. Each dot in the figure represents a one-dimensional space spanned by the
vector |j = 2,m〉.

Eigenvectors of a hermitian operator with different eigenvalues are orthogonal.
Since J2 and J3 are hermitian,

〈j,m|j,m′〉 = δm,m′ , (2.3.37)

Table 2.1 Allowed values of
the third component of
angular momentum m for j =
1/2, 1, 3/2 and 2

j m j m j m j m

1/2 1/2 1 1 3/2 3/2 2 2

−1/2 0 1/2 1

−1 −1/2 0

−3/2 −1

−2
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m
−2 −1 +1 +20

Fig. 2.3 Weight diagram with j = 2 for an irreducible representation of SO(3)

where the eigenvectors have been chosen to have unit length.
Matrix elements of the operators J∓ in (2.3.19) will now be determined. From

(2.3.11) it follows that when Ω = J∓ acts on the basis vector |j,m〉, it creates a
vector that is an eigenvector of J3 with an eigenvalue h̄(m± 1). Thus the vector is
proportional to |j,m∓ 1〉:

J∓|j,m〉 = h̄α∓|j,m∓ 1〉 , (2.3.38)

where the proportionality constants α∓ depend on j and m and must be chosen so
that the eigenvectors |j,m∓1〉 are normalized according to (2.3.37). From (2.3.38),

h̄2|α∓|2 = (h̄α∓|j,m∓ 1〉, h̄α∓|j,m∓ 1〉 = (J∓|j,m〉, J∓|j,m〉)
= 〈j,m|J †

∓J∓|j,m〉. (2.3.39)

Equations (2.3.20) and (2.3.27) then allow the calculation of α∓ from (2.3.39):

h̄2|α∓|2 = 〈j,m|J2 − J 2
3 ± h̄J3|j,m〉 = h̄2[j (j + 1)−m2 ±m]

= h̄2(j ±m)(j ∓m+ 1) . (2.3.40)

Except for a phase, which is chosen to be unity,

α∓ =
√

(j ±m)(j ∓m+ 1) . (2.3.41)

Example 2.3.1 Express J1|j,m〉 in terms of normalized eigenvectors.

Solution Using (2.3.19) to write J1 in terms of J+ and J− and then using (2.3.38)
and (2.3.41),

J1|j,m〉 = 1

2
(J+ + J−)|j,m〉 = 1

2
h̄α+|j,m+ 1〉 + 1

2
h̄α−|j,m− 1〉 ,

or

J1|j,m〉 = h̄

2

√

(j −m)(j +m+ 1)|j,m+1〉+ h̄

2

√

(j +m)(j −m+ 1)|j,m−1〉 .
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Example 2.3.2 Calculate the matrix element 〈j,m|J 2
1 |j,m〉.

Solution Again using (2.3.19) to express J1 in terms of J+ and J−,

〈j,m|J 2
1 |j,m〉 = 〈j,m|

1

2
(J+ + J−)

1

2
(J+ + J−)|j,m〉 .

The only non-zero contributions will come from operator products that contain both
a raising and a lowering operator because both original eigenvectors have the same
value of m.

〈j,m|J 2
1 |j,m〉 = 〈j,m|

1

4
(J+J− + J−J+)|j,m〉 = h̄2

2
[j (j + 1)−m2] .

The last line can be calculated most easily from (2.3.27) although (2.3.38)
and (2.3.41) could be used instead.

For every integer and half-integer value j = 0, 1/2, 1, 3/2, . . . , there exists
a (2j + 1)-dimensional scalar-product space �j labeled by the value of the angular
momentum j . This space is “spanned” by the 2j + 1 eigenvectors |j,m〉 of the set
of operators J2 and J3 of (2.3.35). The space �j is the space in which all vectors
are of the form

�j = {ψj =
j
∑

m=−j

|j,m〉 am, am = 〈j,m|ψj 〉 ∈ C } , (2.3.42)

where j and m are the eigenvalues of J2 and J3. From (2.3.35), (2.3.38), and
(2.3.41), the action of the operators J2, J3, and J± on the basis vectors |j,m〉 is
given by

J2|j,m〉 = h̄2j (j + 1) |j,m〉 , (2.3.43a)

J3|j,m〉 = h̄m |j,m〉 , (2.3.43b)

J±|j,m〉 = h̄
√

(j ±m)(j ∓m+ 1) |j,m± 1〉 . (2.3.43c)

The action of any operator A ∈ E (SO(3)) can now be calculated by expressing it in
terms of J3, J+, and J− and then using (2.3.43).

The eigenvector |j,m〉 spans a one-dimensional space

�j
m = {ψj

m = a|j,m〉; a ∈ C } . (2.3.44)

The projection operator onto this one-dimensional space,

Λ
j
m = |jm〉〈jm| , (2.3.45)
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describes the state in which the angular momentum value is j and the component of
angular momentum in the three-direction is m.

The space �j of (2.3.42) is said to be the orthogonal, direct sum of the one-
dimensional spaces �j

m and is written as

�j =
j
∑

m=−j

⊕�j
m , �j

m′ ⊥ �j
m for m′ �= m . (2.3.46)

The subspaces �j
m and �j

m′ are orthogonal to each other when m �= m′. Equa-
tion (2.3.42) implies that the 2j + 1 angular momentum eigenvectors

|j,m〉, m = j, j − 1, j − 2, . . . ,−j + 1,−j , (2.3.47)

are a basis system for the (2j + 1)-dimensional space �j - just as the three vectors
e2, e2, and e3 provide a basis system for the usual three-dimensional space R3. A
major mathematical difference between R3 and �j is that in R3 the components xi

of the vector x = eix
i are real numbers, xi ∈ R, and in�j the expansion coefficients

am in (2.3.42) are complex, am ∈ C.
The operators J3, J+, J− (or J1, J2, J3) and all elements A of the enveloping

algebra of SO(3), E (SO(3)), as defined in (2.3.8) act irreducibly in the space �j .
That is, for every ψj ∈ �j it follows that A ψj = ψ̃j ∈ �j . This means that there
exists no non-trivial subspace that remains invariant (is not transformed) under the
action of all the operators A ∈ E (SO(3)). The space �j is called an irreducible
representation space of E (SO(3)).4 In summary, for every integer or half integer
value of j , there exists a (2j + 1)-dimensional, linear, scalar-product space �j in
which the angular momentum operators Jκ , (κ = 0, ±1), act as given in (2.3.43).

The space �j describes a quantum system with angular momentum j . Similarly,
the space �j

m describes a quantum system with angular momentum j and compo-
nent of angular momentum J3 = e3 · J in the three-direction e3 given by m. Here
e3 is the unit vector in the 3-direction, which can be chosen to be in any arbitrary
direction. When a specific direction is singled out, for example, by the direction
of a magnetic field, then e3 is chosen as the direction of the magnetic field.5 The

4As will be discussed below,�j is also the irreducible representation space of the set of all rotations
in ordinary three-dimensional space R3. This set of rotations forms a group. A group G is a set of
elements a, b, c,. . . , with the following properties:
(1) For every a, b ∈ G then a · b ∈ G and b · a ∈ G.
(2) For every a, b, c ∈ G, then (a · b) · c = a · (b · c).
(3) There exists an e ∈ G, called the identity, such that e · a = a · e = a for all a ∈ G.
(4) For every a ∈ G there exists exactly one h ∈ G such that h · a = a · h = e. The element h is
called the inverse of a and is written h = a−1.
In general, a · b �= b · a so the elements do not necessarily commute.
5Since the magnetic field was used in early quantum mechanics to distinguish a particular direction
in three-dimensional space, the quantum number m is called the magnetic quantum number.
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eigenvectors of the component of angular momentum in any direction n, namely
n · J, can be given as linear combinations of the form (2.3.42).

When the possible values of m of an irreducible representation are plotted along
a line as in Fig. 2.3 on page 80: the figure is called the weight diagram of the
irreducible representation characterized by j . To each dot there corresponds a
basis vector |j,m〉 (up to a phase factor) in the representation space �j . That is,
there is a one-to-one correspondence between each dot and the one-dimensional
subspace �j

m. Each one-dimensional subspace represents a (pure) physical state
with angular momentum j and component m. Thus to each point in the weight
diagram there corresponds a (pure) physical state with angular momentum j and
component of angular momentum m. This subspace is also described by the
projection operator Λ

j
m of (2.3.45).

In general, angular momentum is defined by the commutation relations (2.3.1).
As far as the algebra of angular momentum is concerned, there is no difference
between the representations with integer and half-integer values of j . However,
angular momentum is not always defined solely by the commutation relations
(2.3.1). For example, orbital angular momentum Li is defined in terms of the
position operators Qj and momentum operators Pk according to the relation

Li ≡ εijkQjPk , (L = Q× P) , (2.3.48)

where Qj and Pk fulfill the canonical commutation relations (2.2.6). The operator
L = Q × P represents orbital angular momentum of a mass-point, of the center
of mass of an extended object, or of an arrangement of mass points such as the
dumbbell.

As a result of the commutation relations satisfied by Qj and Pk , it is straightfor-
ward to show that the Li satisfy the algebra of angular momentum (2.3.1). But an
additional consequence of the Li being defined by (2.3.48) is that the eigenvalues
of L3 can only be integers, m = 0, 1, 2, . . . , and the eigenvalues of L2 are �(�+ 1)

with � taking only integer values, � = 0, 1, 2, . . . .6

Example 2.3.3 Show that the allowed values of � for orbital angular momentum are
integers.

Solution From (1.2.16) it follows that the annihilation and creation operators for
the harmonic oscillator in three dimensions are, respectively,

ai = 1√
2

(√
μ ω

h̄
Qi + i√

μ ω h̄
Pi

)

, (2.3.49a)

a
†
i =

1√
2

(√
μ ω

h̄
Qi − i√

μ ω h̄
Pi

)

. (2.3.49b)

6When � = 1, the angular momentum operators Li are the generators of rotations in three-
dimensional space R3, which is isomorphic to ��=1.
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Solving for Qi and Pi in terms of ai and a
†
i ,

Qi =
√

h̄

2 μ ω
(a

†
i + ai) , Pi = i

√

μ ω h̄

2
(a

†
i − ai) . (2.3.50)

From (2.2.3c)

L3 = Q1P2 −Q2P1 , (2.3.51)

Using (2.3.49) to express Qi and Pi in terms of raising and lowering operators,

L3 = i
h̄

2
[(a†

1 + a1)(a
†
2 − a2)− (a

†
2 + a2)(a

†
1 − a1)] (2.3.52)

From the Heisenberg commutation relations it follows that

[a†
1, a

†
2] = 0 , [a1, a

†
2] = 0 , [ a†

1, a2] = 0 , [a1, a2] = 0 . (2.3.53)

Combining (2.3.52) and (2.3.53), L3 can be written in the form

L3 = ih̄ (a
†
2 a1 − a

†
1 a2) . (2.3.54)

To prove that all values � of angular momentum are integers, it is convenient to
introduce spherical components a0 and a±1 of the ai . In analogy to (2.3.21), the
spherical components of the ai are given by

a0 ≡ a3 , a±1 ≡ ∓ 1√
2
(a1 ± ia2) . (2.3.55)

Inverting (2.3.55) to express the Cartesian components ai in term of the spherical
components,

a1 = − 1√
2
(a+1 − a−1) , a2 = i√

2
(a+1 + a−1) , a3 = a0 . (2.3.56)

From the commutation relations (2.3.53), it follows that the spherical operators aκ

satisfy the commutation relations

[aκ, a
†
λ] = δκ,λ , [aκ, aλ] = 0 , [ a†

κ, a
†
λ] = 0 , (2.3.57)

where κ and λ independently take the values 0 and ±1. Each of the three operators
a0, a+1 and a−1 obeys the algebra satisfied by the operator a as given in (1.3.17)
that describes the one-dimensional harmonic oscillator. Also, for κ �= λ, aκ and a†

κ
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commute with aλ and a
†
λ so, just as is the case for the one-dimensional harmonic

oscillator, it is possible to define three number operators

Nκ = a†
κaκ , κ = 0,±1 . (2.3.58)

For each of the three spherical components there is a representation space Hκ

with basis vectors |nκ〉 that satisfy

Nκ |nκ〉 = nκ |nκ〉 , nκ = 0, 1, 2, . . . . (2.3.59)

In the direct-product space H = H0 ⊗H+1 ⊗H−1 the basis vectors are |n0〉 ⊗
|n+1〉 ⊗ |n−1〉, and the number operator

N = N0 ⊗ 1⊗ 1+ 1⊗N+1 ⊗ 1+ 1⊗ 1⊗N−1 , (2.3.60)

has eigenvalues n = n0+ n+1 + n−1 that are all integers. Using (2.3.56) to express
L3 as given in (2.3.54) in terms of spherical components aκ (See Problem 2.11.),

L3 = h̄(a
†
−1a−1 − a

†
+1a+1) = h̄(N−1 − N+1) . (2.3.61)

Since the eigenvalues of N−1 and N+1 are integers, all eigenvalues of L3 are
integers, implying that all values � of orbital angular momentum are also integers.

In this section all solutions of the commutation relations for the angular momen-
tum operators (2.3.1) have been derived. For every integer and half-integer value j , a
solution has been shown to exist for the angular momentum commutation relations
for self-adjoint, linear operators J

(j)

i in the spaces �j . (Usually the index (j) is

omitted on the J
(j)
i ). These J

(j)
i in �j are called the irreducible representations

of the angular momentum operators. For each representation associated with an
eigenvalue j , there is a weight diagram similar to that shown in Fig. 2.3 on page 80.
Weight diagrams for the lowest dimensional representations are characterized by
j = 0, 1/2, 1, . . . and are given in Fig. 2.4. Each dot in the weight diagram

J

J 2

22 1 1 33 0

1

+ + +_ _ _

_

+

j

m

R

R

R

2

1

0

J

J
2

22 1 1 33 0

1

+ + +_ _ _

_

+

j

m

5/2

3/2

1/2

R

R

R

(a) (b)

Fig. 2.4 Weight diagrams for the irreducible representations of SO(3) with (a) j = 0, 1, 2, . . . ,
and (b) j = 1/2, 3/2, 5/2, . . . and examples of the action of each of the operators J+ and J−
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represents the space �j
m, and the diagram also shows examples of the action of

the operators J±: J±�j
m →�j

m±1.

2.4 Observables of the Rotating Diatomic Molecule:
Properties, Predictions and Limitations

2.4.1 The Algebra E (E(3)) of Observables of the Rotating
Dumbbell

When a quantum system is isolated and the only degrees of freedom are rotations,
the only relevant observables are the angular momentum operators Ji , i = 1,2,3. The
system will remain in a state described by the space �j , where j is the angular
momentum that the state happens to have at a particular time as the result of a prior
preparation. A quantum system described by the (2j+1)-dimensional space �j is
called an elementary rotator with angular momentum j (or h̄ j ). The elementary
rotator in a magnetic field will be studied in Chap. 5 when nuclear magnetic
resonance is discussed. The rigid dumbbell, consisting of two mass points separated
by a fixed distance, was initially discussed as a classical system in Sect. 2.2 and
used to introduce angular momentum. The dumbbell is described by the classical
position r = x1− x2 that points along the rigid dumbbell axis as shown in Figs. 2.2
on page 70 and 2.5. Because the dumbbell is rigid, r2 = constant. Each mass point
rotates about the center of mass, resulting in orbital angular momentum �. If either
or both of the mass points (“atoms”) have intrinsic angular momentum s resulting
from motion of the electrons or from electron spin, then the total angular momentum
j = �+ s.

From this classical picture of the rotating, rigid dumbbell, it is conjectured that
the corresponding quantum mechanical rotating, rigid dumbbell is described by six
observables: three angular momentum operators Ji that correspond to the classical
angular momenta ji and three position operators Qi that correspond to the three
components ri of the vector r that specifies the position of mass m(1) relative to
mass m(2).

Fig. 2.5 Rigid dumbbell

ℓ

r

m (2)

m (1)

center of mass
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2.4.2 Basic Observables—Fundamental Postulate III

For each physical system there exists a set of basic observables from which all
others can be obtained as functions of the set of basic observables. When a quantum
system has a classical analogue, the algebra of observables is obtained using the
correspondence principle. For quantum systems with no classical analogue, the
algebra of observables must be conjectured using intuition and trial-and-error.

Since the dumbbell is rigid, the operators Qi satisfy the condition Q2 = Qi ·
Qi = r2 = constant. The quantum operators Ji , and Qi correspond to the classical
quantities ji and ri and fulfill the commutation relations

[Ji, Jj ] = ih̄εijkJk , (2.4.1a)

[Ji,Qj ] = ih̄εijkQk , (2.4.1b)

[Qi,Qj ] = 0 . (2.4.1c)

The operators Qi that fulfill the commutation relations (2.4.1b) with Ji , which are
defined by the commutation relations (2.4.1a), are called vector operators.7 The
algebra of operators generated by the Ji and Qi is denoted E (E(3)) and is called the
enveloping algebra of the Euclidean group E(3).8

The algebra of observables describing the rotating, rigid dumbbell is the algebra
generated by the angular momentum operators Ji about the center of mass and the
internal position operators Qi describing the internuclear axis of the rotating, rigid
dumbbell. Note that the position operators do not specify the position of the center
of mass of the dumbbell. Such position operators would be required to describe the
translational motion of the dumbbell as a whole, but that motion is being ignored
here.

It can be shown (Problem 2.14) that the algebra of operators that satisfy (2.4.1)
possess the property that the following set of operators commute with each other:

J3 , J2 = JiJi , Q2 = QiQi , Q · J = QiJi . (2.4.2)

7Any set of operators Fi, i = 1, 2, 3, that fulfill the commutation relations [Ji, Fj ] = ih̄εijkFk ,
where the Ji are the angular momentum operators, is called a vector operator.
8E(3) is the group of rotations SO(3) with generators Ji and the three position operators Qi . In
contrast, the physical translations in three-dimensional space are generated by the momentum
operators Pi . The operators m Qi are the generators of the Galilean transformations. Thus the
algebraic manipulations are based on group representation theory, a knowledge of which is
not required here. The orbital angular momentum Li defined by (2.2.3), and the commutation
relations (2.4.1a) were initially derived from the commutation relations (2.2.6) satisfied by the
Pi and Qj . The orbital angular momentum number � can take only integer values 0, 1, 2, . . .

as proved in Sect. 2.3, Example 2.3.3 on page 83. The Ji are defined as self-adjoint operators
fulfilling (2.4.1a) and are thus more general: the total angular momentum j can take both integer
and half-integer values.
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As a consequence, in the representation space�, in which the operators Ji and Qi

act, it is possible to choose vectors that are eigenvectors of all of the four operators
in (2.4.2). These eigenvectors are denoted |r, k0, j,m〉 where r, k0, j and m label
the eigenvalues of the operators in (2.4.2) as follows:

J3|r, k0, j,m〉 = h̄m|r, k0, j,m〉 , (2.4.3a)

J2|r, k0, j,m〉 = h̄2j (j + 1)|r, k0, j,m〉 , (2.4.3b)

Q2|r, k0, j,m〉 = r2|r, k0, j,m〉 , (2.4.3c)

Q · J|r, k0, j,m〉 = h̄rk0|r, k0, j,m〉 . (2.4.3d)

The system of operators (2.4.2) is called a complete system of commuting oper-
ators (c.s.c.o.) of the rotating, rigid dumbbell, and the set of quantum numbers
{r, k0, j,m} is called a complete set of quantum numbers because any state of the
dumbbell can be specified by these numbers.

From correspondence with the classical dumbbell depicted in Fig. 2.5 on
page 86, it follows that the eigenvalue r2 (or r = √r2) characterizes the length of the
internuclear, dumbbell axis. Similarly, the operator Q ·J corresponds to the classical
quantity r · j, the scalar product of the vector r with the angular momentum j. As
a consequence, the eigenvalue rh̄ k0 of the operator Q · J is the eigenvalue of the
component of the angular momentum along the internuclear axis multiplied by the
length of the internuclear axis, and h̄ k0 is the component of angular momentum
along the internuclear axis of the dumbbell molecule.

The operators Q2 and Q · J commute with all of the generators Ji and Qi of the
algebra of observables E (E(3)),

[Q2,Qi ] = 0 , [Q · J,Qi ] = 0 , [Q2, Ji ] = 0 , [Q · J, Ji ] = 0 .

(2.4.4)

Operators that commute with all generators of the algebra are called invariant
operators of the algebra; therefore, Q2 and Q · J = Q1J1 + Q2J2 + Q3J3 are
invariant operators of the algebra E (E(3)).

Because Q2 and Q · J commute with all generators Qi and Ji of the algebra
E (E(3)), it follows from (2.4.3c) and (2.4.3d) that no operator Ji or Qi can transform
from a vector |r, k0, j,m〉 to another vector |r ′, k′0, j,m〉 with eigenvalues r ′ �= r or
k′0 �= k0. This is consistent with the previously imposed condition that the dumbbell
is rigid, implying that r2 can only take one, fixed value and that the component k0
of angular momentum along the internuclear axis, which is in the direction of Q, is
fixed. As a result, the operators Ji and Qi act only within the single space �(k0, r)

characterized by the eigenvalues (k0, r), just as the angular momentum operators Ji

act only within the single space �j characterized by the eigenvalue j . The pair of
constants (k0, r) labels the different (“inequivalent”) representation spaces in which
the generators Ji and Qi of the algebra E (E(3)) act.
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From (2.3.34), for every value j , the magnetic quantum number m takes the
values j, j − 1, · · · − j . Thus the vectors |r, k0, j,m〉, where (k0, r) and j are fixed
constants, span the (2j+1)-dimensional representation space of angular momentum
�j . In the general case j can be either an integer or a half-integer, but if the Ji

are the orbital angular momentum operators (2.2.5) instead of the general angular
momentum operators Ji , the values of j can only be integers.

Since [Ji, Q · J]=0, [Ji, Q2] = 0, and [Ji, J2]=0, the operators Ji , and, more
specifically, the raising and lowering operators J± = J1 ± iJ2, do not change the
values (k0, r) and j . The action of Ji on the basis vectors |r, k0, j,m〉 changes only
the value m. From (2.3.38) and (2.3.41),

J∓|r, k0, j,m〉 = h̄
√

(j ±m)(j ∓m+ 1)|r, k0, j,m∓ 1〉 . (2.4.5)

Similarly, from (2.3.43a),

J3|r, k0, j,m〉 = h̄m|r, k0, j,m〉 . (2.4.6)

The operators Ji transform within an irreducible representation space �j with a
specific value of angular momentum j , transforming between the one-dimensional
subspaces with different angular momentum components m:

J∓�j
m −→ �j

m∓1 J3�j
m −→ �j

m . (2.4.7)

The action of the operators Qi on the eigenvectors |r, k0, j,m〉 can be calculated
using techniques that are similar in principle, but much more complicated in detail,
than those required to calculate J±|j,m〉 as given in (2.3.38) and (2.3.41). Here
the results of this purely mathematical calculation are given without proof.9 Instead
of using the Cartesian components Qi, i = 1, 2, 3, it is again convenient to use
the spherical components Qκ, κ = −1, 0, 1, for the vector operator Q that are, in
analogy with (2.3.21), defined by10

Q0 ≡ Q3 , Q±1 = ∓ 1√
2
(Q1 ± iQ2) . (2.4.8)

From (2.4.8) and the fact that Qi = Q
†
i , it immediately follows that

Q
†
0 = Q0 , (2.4.9a)

Q
†
+1 = −

1√
2
(Q1 − iQ2) = −Q−1 , (2.4.9b)

9For more details and derivations see Chap. 5, Sect. 3 and the appendix to Chap. 5, Sect. 3 of
A. Bohm, Quantum Mechanics: Foundations and Applications, Springer-Verlag, New York, 2nd

Edition (1986), 3rd Edition (1993), and any later paperback or low-currency edition.
10Spherical components are defined in such a way that their matrix elements are readily expressed
in terms of tabulated Clebsch-Gordan coefficients that will be discussed in Chap. 3, Sect. 3.5.
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Q
†
−1 =

1√
2
(Q1 + iQ2) = −Q+1 . (2.4.9c)

As previously discussed, when any operator acts on |r, k0, j,m〉, the parameters
r and k0 remain unchanged. Because Qκ is a vector operator, when Qκ acts on
|r, k0, j,m〉, the change in the value of m is known. It remains to determine how
Qκ changes j . The result depends on the values of the parameters (k0, r), and the
derivation is given in the reference 9 on page 89.

Q0|r, k0, j,m〉 =
√

j2 −m2 Cj |r, k0, j − 1,m〉 −maj |r, k0, j,m〉

−
√

(j + 1)2 −m2 Cj+1|r, k0, j + 1,m〉 , (2.4.10a)

−√2 Q±1|r, k0, j,m〉 =
√

(j ∓m)(j ∓m− 1) Cj |r, k0, j − 1,m± 1〉
∓√

(j ∓m)(j ±m+ 1) aj |r, k0, j,m± 1〉
+√

(j ±m+ 1)(j ±m+ 2)Cj+1|r, k0, j + 1,m± 1〉 , (2.4.10b)

where

Cj = r
i

j

√

j2 − k2
0

4j2 − 1
and aj = k0r

j (j + 1)
. (2.4.11)

The parameters (k0, r) characterize the representations of the algebra of E (E(3))
and take the values,

k0 = ±0,±1/2,±1,±3/2,± · · · and 0 ≤ r < ∞ . (2.4.12)

Although (2.4.10) and (2.4.11) are not derived here, it is straight forward to verify
some features of the equations. For example, because J2 does not commute with Qj ,
Qj changes the eigenvalue j (j + 1) of J2.

Example 2.4.1 Derive the equation

[J2,Qj ] = 2h̄2Qj + 2ih̄εjkiQkJi .

Solution Recalling that repeated indices are summed over their range and using the
identity [AB,C] = A[B,C] + [A,C]B that is readily verified by explicitly writing
the commutators,

[J2,Qj ] ≡ [JiJi,Qj ] = Ji[Ji,Qj ] + [Ji,Qj ]Ji.
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With the aid of (2.4.1b),

[J2,Qj ] = Ji(ih̄ εijkQk)+ (ih̄ εijkQk)Ji = ih̄ εijk [JiQk +QkJi] .

Again using (2.4.1b), this time to commute Ji and Qk ,

[J2,Qj ] = ih̄ εijk[QkJi + ih̄εikmQm +QkJi ] = h̄2εikj εikmQm + 2ih̄ εijkQkJi .

The identity εikj εikm = 2δjm (See Problem 2.17.) allows the above equation to be
written in the desired form.

Example 2.4.2 Determine the angular momentum of the vector Q+1|r, k0, j,m=j 〉.
Solution From Example 2.4.1 and the definition (2.4.8) for Q±1, it follows that

[J2,Q±1] = 2h̄2Q±1 ± 2h̄Q±1J3 +
√

2h̄Q3J± .

Applying the above equation to |r, k0, j,m = j 〉

J2Q+1|r, k0, j, j 〉 = [Q+1J2 + 2h̄2Q+1 + 2h̄Q+1J3 +
√

2h̄Q3J+|r, k0, j, j 〉 ,

When the raising operator J+ acts on |r, k0, j, j 〉, the result is zero. Thus

J2Q+1|r, k0, j, j 〉 = h̄2 [(j)(j + 1)+ 2+ 2j ] Q+1|r, k0, j, j 〉
= h̄2(j + 1)(j + 2)Q+1|r, k0, j, j 〉 ,

From the above equation it follows that Q+1|r, k0, j,m = j 〉 is a state with angular
momentum j + 1, which agrees with (2.4.10b).

Summarizing, for every pair of values (k0, r) from the set (2.4.12), there exists
a representation of E (E(3)) in a linear space �(k0, r) in which the eigenvectors
|r, k0, j,m〉 of the observables (2.4.2) form a basis system on which J3, J±, Q0
and Q±1 act, respectively, as given by (2.3.43) and (2.4.10). As can be seen from
(2.4.10), the spherical components Q0 and Q±1 of the vector operator Q transform
between neighboring angular momentum states, changing the value of j by +1, 0,
and -1. Simultaneously Qκ changes the value m by κ = 0, ±1:

↗ j + 1

Qκ : j → j Qκ : m → m+ κ.

↘ j − 1

(2.4.13)
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The space �(k0, r) spanned by the eigenvectors |r, k0, j,m〉 is the space of all
linear combinations of |r, k0, j,m〉:

�(k0, r) = {ψ(k0,r) =
∞
∑

j=k0, k0+1, ...

j
∑

m=−j,−j+1, ...

a
(k0,r)
j,m |r, k0, j,m〉, a

(k0,r)
j,m ∈ C}

(2.4.14)

The Qi and Ji are the generators of the algebra A (Qi, Ji) = E (E(3)), and the
space �(k0, r) is transformed into itself by this algebra. �(k0, r) is an irreducible
representation space of the algebra A (Qi, Ji) = E (E(3)).11 The spaces �(k0, r)

are invariant under the action of the elements of A (Qi, Ji) in the same way that the
spaces �j are invariant under the action of the Ji .

The eigenvalues (k0, r) characterize the physical system described by the algebra
of observablesA (Qi, Ji) in the space�(k0, r) in the same way that the eigenvalue j

characterizes the physical system described by the algebra of observables A (Ji)

generated by the Ji in the space �j .
From (2.4.3c), it follows that the invariant r is the length of the internuclear axis,

the “distance” between the two atoms of the diatomic dumbbell.12 The physical
interpretation of k0 follows from (2.4.3d) and (2.4.10). According to (2.4.3d),

Q · J
r
|r, k0, j,m〉 = h̄k0|r, k0, j,m〉 , (2.4.15)

revealing that k0 is the value of angular momentum along the direction r/r of the
internuclear axis. Each of the eigenvectors of the form |r, k0, j − 1,m + κ〉 that
appear on the right-hand side of (2.4.10) are multiplied by the coefficient Cj . But as
can be seen from (2.4.11), Cj = 0 for j = k0 so Qκ cannot transform to a state with
a value of j less than j = k0. Thus for the quantum physical system described by
the algebra of Ji and Qk in the space �(k0, r), the lowest possible value of angular
momentum that the system can have is k0.

If the angular momentum is only the orbital angular momentum of the rigid
dumbbell depicted in Fig. 2.5 on page 86 and the two atoms have no spin, then
Ji = Li = εijkQjPk , implying that the lowest value of angular momentum is
k0 = 0. If additional angular momentum such as spin (intrinsic angular momentum)
is involved, then k0 could be any integer or half-integer.

11The algebra of observables A (Qi, Ji) is the set of all (infinite) sums and products of operators
of the Qi and Ji ; in this particular case it is the enveloping algebra of the Euclidean group E(3) of
which Qi and Ji are the group generators. The operators Qi and Ji are generators of the associative
algebra of observables and are also the generators of the group E(3), meaning, for example, that
the rotation by an angle φ about the three-axis is given by the unitary operator e−ih̄φJ3 acting in
the space �(k0, r) of (2.4.14).
12More precisely, if eQ is the dipole operator, then r is the distance between the center of positive
electric charge and the center of negative electric charge.
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The “rigid dumbbell rotator” discussed here consists of two atoms connected by
a massless, rigid rod. For k0 = 0 either the atoms are spinless or else the spins of
the two atoms (electrons and nuclei) cancel so that the angular momentum is only
the orbital angular momentum of the dumbbell Li = εijkQjPk . When k0 = 0 the
values of angular momentum j of the dumbbell are j = 0, 1, 2, . . . .

When k0 = 0, then aj in (2.4.11) is also zero, aj = 0. Therefore, from (2.4.10a)
and (2.4.10b) it follows that there are no dipole matrix elements with Δj = 0.
The operator Qκ does not transform between states with the same j : it transforms
between states with Δj = ±1:

↗ j + 1

Qκ : j Qκ : m → m+ κ.

↘ j − 1

(2.4.16)

The space of physical states for this rigid dumbbell rotator is given by

�(k0 = 0, r) =
∞
∑

j=0,1,2,

⊕�j , where �j =
j
∑

m=−j

⊕�j
m , (2.4.17)

and �j is the representation space with angular momentum j .
The action of the position operators Qκ on the basis vectors |r, k0 = 0, j,m〉

is given in (2.4.10): the effect of Q±1 and Q0 on the space �j
m can be written in

simplified form as

Q±1�j
m −→ �j−1

m±1 ⊕�j+1
m±1 , (2.4.18a)

Q0�j
m −→ �j−1

m ⊕�j+1
m . (2.4.18b)

All three operators Q±1 and Q0 change the value of j while the Q±1 change the
value of m and Q0 does not. Repeatedly applying Q±1 and Q0 to the vectors of
one �j with angular momentum j ultimately yields the space �(k0 = 0, r)as given
in (2.4.17).

A graphical depiction of the infinite-dimensional space �(k0 = 0, r) in (2.4.17)
is identical with the collection of weight diagrams of SO(3) depicted in Fig. 2.6
on the next page. Each dot represents a basis vector |j,m〉 = |r, k0 = 0, j,m〉 or,
equivalently, the subspace �j

m. Thus to each dot there corresponds a state of the
rotating, spinless dumbbell. Each horizontal row of dots is a weight diagram for
SO(3) as shown in Fig. 2.3 on page 80 that represents all states with a specific
angular momentum j . The collection of weight diagrams of SO(3) shows which
representation spaces�j of angular momentum j are contained in the space�(k0 =
0, r) and which angular momentum values are possible for the rotating dumbbell
molecule.
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Fig. 2.6 Collections of weight diagrams of SO(3) that make up the infinite weight diagram of
E(3) belonging to the representation space �(k0 = 0, r). Examples of the action of the operators
J±, Q0 and Q±1 on the dots representing the basis vectors |�,m〉 are depicted by arrows, which
show how the components of the dipole operator Qκ , (κ = 0, ±1), transform between the energy
levels of the rotating dumbbell molecule. Since the direct sum in (2.4.17) extends to infinity, the
collections of dots extends to �→∞ as indicated by the dots above ��=3

When Q±1 acts on the dot at the bottom of Fig. 2.6 that represents �j=0, the
space �j=1 is obtained. The J± transform within each space �j as depicted in
Fig. 2.4 on page 85. When Q±1 acts on the dots representing�j=1, the spaces�j=2

and �j=0 can be obtained. Continuing in this way, “all” of the angular momentum
spaces �j , j = 0, 1, 2, . . . of the space of physical states of the diatomic molecule
�(k0 = 0, r) are obtained by dipole transitions.13 The weight diagram Fig. 2.6 of
E(3) generated by Ji and Qi extends to infinity since the space �(k0 = 0, r) is
infinite dimensional.

From correspondence with the classical expression (2.2.30), the Hamiltonian H

of the rigid, rotating diatomic molecule is conjectured to be given by

H = J2

2I
, (2.4.19)

where I is the moment of inertia of the diatomic molecule. Applying this Hamilto-
nian to the vectors |r, k0 = 0, j,m〉 in �(k0 = 0, r) ,

H |r, k0 = 0, j,m〉 = J2

2I
|r, k0 = 0, j,m〉 . (2.4.20)

13The spaces �j are the irreducible representation spaces of the rotation group SO(3) (or SU(2)).
The space �(k0 = 0, r) for any real number r is also an irreducible representation space of a
group, the three-dimensional Euclidean group E(3). The generators of this group are the Jκ and Qκ ,
(κ = 0, ±1), or, equivalently, Ji and Qi , i = 1, 2, 3, that obey the commutation relations (2.4.1)
that are the defining commutation relations of the group E(3).
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Fig. 2.7 Energy levels of a
rigid, rotating diatomic
molecule
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Using (2.4.3b) yields the energy spectrum Fig. 2.7 of the rotator for which k0 = 0.
For such rotators the lowest energy eigenstate has angular momentum � = 0. The
energy spectrum is given by

Ej = h̄2

2I
j (j + 1) , j = 0, 1, 2, . . . . (2.4.21)

To each energy value Ej there corresponds the (2j+1)-dimensional space�j defined
in (2.3.46) that is described by the state operator

ρj = 1

2j + 1

m=j
∑

m=−j

|j,m〉〈j,m| . (2.4.22)

Thus the energy value Ej is said to be (2j + 1)-fold degenerate. The energy
levels (2.4.21) of the rigid, rotating diatomic molecules are depicted in Fig. 2.7.
The energy levels (2.4.21) of the rigid rotator model agree with the experimentally
observed energy levels of a rigid, rotating diatomic molecule in the limited energy
range around 10−3 eV where the molecule is approximately rigid. At this energy the
frequency of emitted and absorbed radiation is on the order of 1011 Hz.

The rotation group generated by the angular momentum operators Ji is a sym-
metry group. The Jκ , (κ = 0, ±1), commute with the Hamiltonian H in (2.4.19)
and do not transform between different energy values. The operators Qκ transform
between different energy levels (2.4.21) of the rigid rotator as indicated in (2.4.18)
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and given explicitly by (2.4.10). Therefore, the group E(3) with generators Ji and
Qi is not a symmetry group as is the rotation group SO(3) (or the Galilei group
or Poincaré group of non-relativistic and relativistic space-time transformations,
respectively). Instead E(3) describes the energy spectrum of the rotator and is,
therefore, an example of the spectrum generating groups that were introduced about
1965.14

2.4.3 Absorption Spectrum for Diatomic Molecules

To obtain the spectrum of the radiation when the dumbbell rotator spontaneously
emits photons, the following process must be considered:

Dumbbell Rotator� → Dumbbell Rotatorj + γ . (2.4.23a)

Similarly, the absorption spectrum of the dumbbell rotator is determined by the
process

γ + Dumbbell Rotator� → Dumbbell Rotatorj . (2.4.23b)

The Einstein coefficients for the oscillator were introduced in Chap. 1, Sect. 1.5,
and the Einstein coefficients Amn for spontaneous emission and Bmn for induced
absorption are given, respectively, by (1.5.19) and (1.5.31). In analogy to the discus-
sion in Chap. 1, here the corresponding quantities will be determined for transitions
between rotator energy levels. The discussion is slightly more complicated for
rotator transitions because the rotator energy levels are degenerate: to one energy
level there corresponds a (2j + 1)-dimensional space instead of a single vector or a
one-dimensional space.

The electric dipole moment for the rotator is the vector that points from the center
of the negative charge distribution to the center of the positive charge distribution of
the diatomic molecule. The centers of the positive and negative charge distributions
do not coincide with the positions of the two masses of the dumbbell, but are instead
determined by the electron cloud of the molecule. As a result of axial symmetry,
the centers of the positive and negative charges lie on the internuclear axis. The
electric dipole transitions are proportional to the square of the dipole moment
Dnm = q 〈n|Q|m〉 where q is the magnitude of the electric charge of each of the
two charges that form the dipole. If the molecules consist of two like atoms, as is the
case for O2, the centers of positive and negative charge distributions coincide, and
there are no dipole transitions. But for molecules such as CO, consisting of unlike
atoms, the electric dipole moment is nonzero, and dipole transitions occur.

14A. Bohm, Y. Neeman, A. O. Barut et.al. Dynamical Groups and Spectrum Generating Algebras,
World Scientific Publishing Co., 1988.



2.4 Observables of the Rotating Diatomic Molecule 97

In comparing the one-dimensional oscillator and the rotator in three dimensions,
there are analogous quantities: The energy eigenspaces of the oscillator are one-
dimensional and are described by the energy eigenvectors |En〉 of the oscillator. For
the rotator the energy eigenspaces�j are, according to (2.3.42), (2j+1)-dimensional
and are spanned by the eigenvectors |r, k0, j,m〉. The parameters r and k0 are not
changed by the action of the Jκ , (κ = 0, ±1), and the Qκ because of (2.4.4). The Jκ

do not change the value of j , but J± change the values of m as indicated in Fig. 2.6
on page 94. Also as indicated in Fig. 2.6 on page 94, the Qκ change the values
of j and m. The constants (r, k0) characterize the specific diatomic molecule with
a rigid dumbbell axis; therefore, they will often be suppressed in the discussion:
|r, k0, j,m〉 → |j,m〉.

The analog of the one-dimensional position operator Q for the oscillator are the
position vector-operators Qi, i = 1, 2, 3. Similarly, in place of the one-dimensional
dipole matrix element Dnm of the oscillator, there is the vector dipole matrix element
Di

j� = 〈j, j3|Qi |�, �3〉 for the rotator, where the indices j and �, respectively, label

the (2j+1)- and (2�+1)-dimensional energy eigenspaces�j and �� with energies
Ej and E�, respectively.

The numberPρ′(Λj ) expresses the probability for the observable Λj in the state
ρ′ that has been transformed by the dipole operator Di = qQi, i = 1, 2, 3, from
the �th energy eigenstate ρ�.

The unpolarized energy state corresponding to the �th energy level E� in �� ≡
Λ��(k0, r) is given by the state operator ρ�.

ρ� = 1

2�+ 1
Λ� ≡ 1

2�+ 1

�
∑

m=−�

|�,m〉〈�,m| , (2.4.24)

where Λ� is the projection operator onto ��.
To calculate dipole transitions, the action of the operator Qi on the state ρ�

must be considered. Since the position operators Qi transform between different
spaces�j , the transitions generated by the position operators of the rotator are more
general than for the oscillator. When the operators Qi (or Di ) act on the state ρ�,
the state that results is the transformed State ρ′,

ρ′ =
∑

i

Qiρ
�Qi = 1

2�+ 1

∑

i

QiΛ
�Qi = 1

2�+ 1

∑

i

�
∑

m=−�

Qi |�,m〉〈�,m|Qi .

(2.4.25)

The probability of a transition from the �th to the j th energy level is the probability
of detecting the observable Λj in the transformed state ρ′. This probability, the
Born probability for the observable Λj in the state ρ′, is, according to axiom II of
quantum mechanics, given by

Pρ′(Λ
j ) = Tr(ρ′Λj) =

∑

i=1,2,3

Tr[Qiρ
�QiΛ

j ]. (2.4.26)
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For the oscillator the probability for |En〉 in the state φ′ is denoted Pφ′(|En〉) =
|〈En|φ′〉|2 = |〈En|Q|Em〉|2.

If all (2j + 1) polarizations are detected, the sum must be taken over all m′ for
the observable Λj =∑

m′ |j,m′〉〈j,m′|. Using (2.4.25), the expression (2.4.26) for
Pρ′(Λj ) becomes

Pρ′(Λ
j ) = 1

2�+ 1

∑

i

�
∑

m=−�

Tr[Qi |�,m〉〈�,m|QiΛ
j ]

= 1

2�+ 1

∑

i

∑

m

∑

m′
Tr[Qi |�,m〉〈�,m|Qi |j,m′〉〈j,m′|]

= 1

2�+ 1

∑

i

∑

m

∑

m′
〈j,m′|Qi |�,m〉〈�,m|Qi |j,m′〉 . (2.4.27)

Pρ′(Λj ) is the probability of detecting the observable Λj in the state ρ′ that
is obtained from the �th unpolarized energy eigenstate Λ� as a result of the
action of the dipole operator Qi . In other words, Pρ′(Λj ) is the probability for
dipole transitions from the energy eigenspace �� to the energy eigenspace �j .
Because the |�,m〉 are vectors in the spherical basis, formulas are simpler when
spherical components Qκ , (κ = 0, ±1), of (2.4.8) are used instead of the Cartesian
components Qi of the vector transition operator. Making use of (2.4.8) and (2.4.9),
it follows that

Q2 ≡ QiQi = Q2
0 −Q+1Q−1 −Q−1Q+1 = Q2

0 +Q
†
−1Q−1 +Q

†
+1Q+1 .

(2.4.28)

Summing over i in (2.4.27), and then using (2.4.28),

Pρ′(Λ
j ) = 1

2�+ 1

∑

m

∑

m′
[〈j,m′|Q0|�,m〉〈�,m|Q0|j,m′〉

+ 〈j,m′|Q†
−1|�,m〉〈�,m|Q−1|j,m′〉 + 〈j,m′|Q†

+1|�,m〉〈�,m|Q+1|j,m′〉]

= 1

2�+ 1

∑

m

∑

m′
[〈�,m|Q0|j,m′〉∗〈�,m|Q0|j,m′〉

+ 〈�,m|Q−1|j,m′〉∗〈�,m|Q−1|j,m′〉 + 〈�,m|Q+1|j,m′〉∗〈�,m|Q+1|j,m′〉]

= 1

2�+ 1

∑

κ=0,±1

∑

m

∑

m′
[〈�,m|Qκ |j,m′〉∗〈�,m|Qκ |j,m′〉] . (2.4.29)
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The square of the electric dipole moment vector for the transitions with initial
state unpolarized and all (2j + 1) polarizations detected is then given by

∑

i=1,2,3

Di
j,�(D

i
j,�)

† = |Dj�|2 = q2

2�+ 1

∑

i

∑

m

∑

m′
〈j,m′|Qi|�,m〉〈�,m|Qi|j,m′〉 ,

(2.4.30)
which is often also written as

|Dj�|2 = q2

2�+ 1

∑

m

∑

m′
|〈j,m′|Q|�,m〉|2 . (2.4.31)

The formula |〈j,m′|Q|�,m〉|2 requires a summation be made over the three
coordinates of the position operator,

|〈j,m′|Q|�,m〉|2 =
3
∑

i=1

|〈j,m′|Qi |�,m〉|2 (2.4.32a)

Using the definitions of Q0 and Q±1 as given in (2.4.8), the above formula can be
rewritten in the desired form,

|〈j,m′|Q|�,m〉|2 = |〈j,m′|Q0|�,m〉|2+|〈j,m′|Q+1|�,m〉|2+|〈j,m′|Q−1|�,m〉|2 .

(2.4.32b)

With the aid of (2.4.32b), (2.4.31) becomes

|Dj�|2 = q2

2�+ 1

∑

m

∑

m′

[

|〈j,m′|Q0|�,m〉|2

+|〈j,m′|Q+1|�,m〉|2 + |〈j,m′|Q−1|�,m〉|2
]

. (2.4.33)

The above formula indicates that the “initial states” |�,m〉 with angular momentum
� must be averaged over, and the final states |j,m′〉 with angular momentum j must
be summed over.

Although a rotating diatomic molecule emits magnetic dipole radiation, the
magnetic dipole probabilities are approximately 10−5 of the electric dipole prob-
abilities.15 Thus the radiated energy results almost entirely from electric dipole
radiation. As a consequence, the decay probability per unit time for the spontaneous
transition from a level with angular momentum j into the �th energy level of the

15G. Herzberg, Spectra of Diatomic Molecules, 2nd Ed. p.19, Van Nostrand Reinhold Company,
New York, 1950.
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rotator is the Einstein coefficient Aj� that is obtained from (1.5.19) by making the
replacement q2|〈En|q|Em〉| → |Dj�|2,

Aj� = (ωj,�)
3

3πε0c3h̄
|Dj�|2 . (2.4.34)

The decay probability per unit time is called the decay rate, which is denoted Γj�.
Since Aj� is the probability of decay per unit time, the lifetime τj� of a level with
angular momentum j as it decays into the �th energy level of the rotator is the
reciprocal of Aj�,

τj� = 1

Aj�

= 3πε0c
3h̄

(ωj,�)3

1

|Dj�|2 . (2.4.35)

The angular frequency ωj,� in (2.4.34) and (2.4.35) is related to the frequency
of the emitted radiation νj,� by ωj,� = 2πνj,�. From energy conservation in the
spontaneous emission process (2.4.23a), it follows that

E� = Ej + hνj,� . (2.4.36)

Similarly the Einstein coefficient B�j for induced absorption is obtained from
(1.5.30) by making the replacement q2|〈En|q|Em〉| → |Dj�|2,

Bj� = π

3ε0h̄
2 |Dj�|2 . (2.4.37)

Energy conservation for induced absorption (2.4.23b) implies

hνj,� + E� = Ej . (2.4.38)

The selection rules for spontaneous emission and induced absorption are
obtained from the nonzero values for the matrix elements in (2.4.34). As determined
analytically from (2.4.10) and indicated graphically in Fig. 2.6 on page 94, the
matrix elements of Q0 and Q±1 satisfy

〈j,m′|Q±1|�,m〉 = 0 unless m′ = m± 1 and �− j = ±1 , (2.4.39a)

〈j,m′|Q0|�,m〉 = 0 unless m′ = m and �− j = ±1 . (2.4.39b)

The experimental results for the process of radiation absorption (2.4.23b) are
now considered in detail. From (2.4.39) it follows that for absorption j = � + 1
so (2.4.38) becomes

hν�+1,� = E�+1 − E� . (2.4.40)
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In molecular spectroscopy it is customary to give the frequency in wave number
units cm−1 where ν (in cm−1) =ν (in Hz) /c (in cm/s). Using the expression for E�

as given in (2.4.21), from (2.4.39) the absorbed frequencies in wave number units
are

ν�+1,� = E�+1 − E�

hc
=

h̄2

2I
(�+ 1)(�+ 2)− h̄2

2I
(�)(�+ 1)

2πh̄c

= h̄

4πcI
2(�+ 1) ≡ B 2(�+ 1), � = 0, 1, 2, . . . , (2.4.41)

where B is defined by

B ≡ h̄

4πcI
= h

8π2cI
. (2.4.42)

According to (2.4.41) the differences between the successive frequencies are given
by

Δν = ν�+1,� − ν�,�−1 = 2B, (2.4.43)

implying that the frequencies are expected to have equidistant spacings. The energy
levels of the rotator and the frequencies ν�+1,� absorbed in the transition from the
�th to the j th = (� + 1)st level are shown in Fig. 2.7 on page 95 and Table 2.3 on
page 103, respectively.

The absorption spectrum of HCl in the far infrared has been measured, and
the experimental results, which are given in the second column of Table 2.3 on
page 103, can be used to check the extent to which the model of the HCl molecule
as a quantum mechanical dumbbell is justified. The third column of Table 2.3 on
page 103 displays the differences between the successive frequencies. The first
eleven frequencies have roughly equal spacing and fitting them with (2.4.41) yields
the following value for the constant B:

BHCl = h

8π2cIHCl
≈ 10.35 cm−1 . (2.4.44)

The fourth column of Table 2.3 on page 103 gives the values calculated
from (2.4.41) with the value (2.4.44). Comparing the second and fourth columns,
there is fairly good agreement between the observed and calculated values for the
first eleven frequencies, but the agreement becomes worse as � increases further.

From (2.4.44) the moment of inertia IHCl can be calculated,

IHCl = h

8π2cBHCl
= 2.705 · 10−47 kg m2. (2.4.45)
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Using (2.2.22) and (2.2.27), the length r of the internuclear axis can be expressed in
terms of the masses mH, mCl and the moment of inertia IHCl,

rHCl =
√

IHCl(mH +mCl)

mHmCl
. (2.4.46)

The mass of an atom can be calculated by dividing the mass per mole by Avogadro’s
number, which yields mH = 1.674 × 10−27 kg and mCl = 5.887 × 10−26 kg.
Using the value of IHCl obtained from the infrared absorption spectrum as given
by (2.4.45), the internuclear distance between the hydrogen and chlorine nuclei can
be calculated: rHCl = 1.289 × 10−10 m, in good agreement with values obtained
from other classical considerations.

2.4.4 Absorption Spectrum for Non-rigid Diatomic Molecules

As � increases, deviations from the rigid rotator model for the diatomic molecule
become apparent when entries predicted by (2.4.41) in the fourth column of
Table 2.2 are compared with the observed values in the second column. At higher
values of �, the differences between successive frequencies are smaller than at lower
values. The frequencies are no longer equally spaced as predicted by the rigid rotator
formula (2.4.41). Instead there is a trend suggesting that (2.4.41) should be modified
to obtain better agreement at higher values of �. The final column of the Table 2.3
on the next page fits the data with the empirical formula

ν�+1,� = 2b(�+ 1)− 4d(�+ 1)3 , (2.4.47)

Table 2.2 Basis vectors, position operator, dipole matrix elements, energy eigenstates and
probability for a dipole transition of the oscillator and corresponding quantities for the rotator

Oscillator Rotator

Basis vectors |n〉 −→ |�,m〉
Position operator Q −→ Qi

Dipole matrix elements Dmn = 〈Em|Q|En〉 −→ Di
j� = q〈j, j3|Qi |�, �3〉

Energy eigenstates ρn = |En〉〈En| −→ ρ� = 1
(2�+1)

∑m=�
m=−�×

φn = |En〉 |�,m〉〈�,m|
= 1

(2�+1)
Λ�

Transition probability PQ|m〉(|n〉〈n|) −→ Pρ′ (Λj )

=Tr([|n〉〈n|Q|m〉〈m|Q]) where ρ′ = Qiρ
�Qi ,

= |〈n|Q|m〉|2 and ρ� = 1
(2�+1)

Λ�

φ′ = Qφn
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Table 2.3 Absorption spectrum of HCl in the far infrare

� ν�−1,� cm−1 Δνobs νcalc = 20.70� νcalc = 20.88� − 0.001837�3

1 20.8 20.8 20.70 20.87

2 41.6 20.9 41.41 41.74

3 62.5 20.53 62.11 62.58

4 83.03 21.10 82.82 83.39

5 104.13 20.60 103.52 104.15

6 124.73 20.64 124.22 124.86

7 145.37 20.52 144.93 145.50

8 165.89 20.34 165.63 166.07

9 186.23 20.37 186.33 186.54

10 206.60 22.26 207.04 206.92

11 228.86 227.74 227.19

17 345.6 19.0 351.96 345.86

18 364.6 19.6 372.67 365.05

19 384.2 19.2 393.37 384.04

20 403.4 18.7 414.07 402.82

21 422.1 18.0 434.78 421.37

22 440.1 18.2 455.48 439.70

23 458.3 18.1 476.18 457.79

24 474.4 19.9 496.89 475.62

25 494.3 16.9 517.59 493.18

26 511.2 16.5 538.30 510.48

27 527.7 15.2 559.00 527.48

28 542.9 18.2 579.70 544.19

29 561.1 15.3 600.41 560.59

30 576.4 13.2 621.11 576.66

31 589.6 19.8 641.81 592.41

32 609.4 14.0 662.52 607.82

33 623.4 683.22 622.87

Data for l = 1, 2, 3 from McCubbin J. Chem. Phys. 20, 668 (1952); for l = 4, . . . , 11 from R.
L. Hansler and R. A. Oetjen, J. Chem. Phys. 21, 1340 (1953); for l = 17, . . . , 33 from J. Strong,
Phys. Rev. 45, 877 (1934). The units of ν are cm−1

where b and d are constants. Comparing the final column with the observed values
in the second column, the agreement of (2.4.47) with the experimental data is far
better than that of (2.4.41). The energy spectrum that corresponds to (2.4.47) is
given by16

El = 2πh̄c[b�(�+ 1)− d�2(�+ 1)2] . (2.4.48)

16The ad hoc formula E� = 2πh̄c[b′ − d ′�]�(� + 1) is popular for fitting rotational spectra;
however, (2.4.47) provides a better fit to the molecular rotation spectra. It will be shown
that (2.4.47) is easily understood theoretically.
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Fig. 2.8 Energy levels of the
non-rigid rotator (solid lines)
and the corresponding rigid
rotator (dashed lines). To the
scale of the drawing, the
levels cannot be distinguished
for � < 6 [from Herzberg
(1966), with permission]

The energy levels (2.4.48) have been drawn in Fig. 2.8 with an exaggerated value
of d that appears in the above equation.

The explanation for the better fit of (2.4.48) to the experimental values follows
from the fact that the diatomic molecule HCl is not exactly a rigid rotator. The
bonds between atoms are not rigid with the result that the interatomic distance
increases with the speed of rotation. Equation (2.4.48) can be obtained theoretically
by returning to the classical picture in which the molecule is considered to be two
mass points (nuclei of atoms) joined, not by a rigid rod as in Fig. 2.2 on page 70 , but
instead by a spring as in Fig. 2.9 on the facing page. This is the same picture used
in Chap. 2 to describe the vibrating dumbbell of the quantum harmonic oscillator.
The respective equilibrium distances between the center of mass and the masses
m(1) and m(2) when the molecule is not spinning are denoted x(1)

e and x(2)
e and are

depicted in Fig. 2.9 on the next page. The total distance between the masses when
the molecule is spinning and when the molecule is not are, respectively, r and re
where r is given in (2.2.18) and re is

re = x(1)
e − x(2)

e . (2.4.49)

The energy of this system is the sum of the rotational kinetic energy of the two
nuclei plus the (elastic) potential energy of the oscillator,

E = 1

2
m(1)

[

dx(1)

dt

]2

+ 1

2
m(2)

[

dx(2)

dt

]2

+ 1

2
k(r − re)

2 . (2.4.50)



2.4 Observables of the Rotating Diatomic Molecule 105

Fig. 2.9 For a rotating diatomic molecules with a variable internuclear distance, the position
vectors x(1) and x(2) for masses m(1) and m(2), respectively, and the vector r = x(1) − x(2); the
position vectors x(1)

e and x(2)
e for masses m(1) and m(2), respectively, when � = 0 and the vector

re = x(1)
e − x(2)

e

In the above equation k is the “spring constant.”
With the aid of (2.2.21) and (2.2.25), the two kinetic terms in (2.4.50) can be

expressed in terms of the variables l2 and r ,

Ekinetic = 1

2
m(1)

[

dx(1)

dt

]2

+ 1

2
m(2)

[

dx(2)

dt

]2

= l2

2μr2 . (2.4.51)

The elastic force keeps the two masses moving in a circle about the center of
mass so, for each of the two masses, Newton’s second law requires that the elastic
force equal the product of the mass of the particle and its centripetal acceleration,

k(r − re) = mi

(
dx(i)

dt

)2

|x(i)| , i = 1, 2 . (2.4.52)

Using (2.2.20) with xCM = 0, the right-hand side of (2.4.52) is found to be the same
for both i = 1 and i = 2, and the following expression for r − re is obtained:

r − re = μ

kr

(
dr

dt

)2

= l2

kμr3 . (2.4.53)
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The final equality follows from (2.2.25).
Equations (2.4.51) and (2.4.53) permit the formula for energy as given in (2.4.50)

to be written in the form

E = l2

2μr2
+ (l2)2

2kμ2r6
. (2.4.54)

To determine the spectrum of the Hamiltonian corresponding to the expression
for the energy E in (2.4.54), it is necessary to determine the variable r2, which
is accomplished by expressing r in terms of l2. Adding and subtracting re in the
numerator of (r/re)

2,

(
r

re

)2

=
[
re + (r − re)

re

]2

= 1+ 2
(r − re)

re
+O

([
(r − re)

re

]2
)

. (2.4.55)

Using (2.4.53) to rewrite r − re in terms of l2,

r2 = r2
e +

2re

kμr3 l2 +O
(

(l2)2
)

. (2.4.56)

The desired formula for energy is obtained using (2.4.56) to eliminate r2 in (2.4.54),

E = l2

2μ(r2
e + 2re

kμr3 l2)
+ (l2)2

2kμ2r6
e
+O

(

(l2)3 = l2

2μr2
e
− (l2)2

2kμ2r6
e
+O

(

(l2)3
)

.

(2.4.57)

The first term is the energy of the rigid rotator, and the second term is the elastic
energy that is present because the rotator is not precisely rigid. The corresponding
quantum Hamiltonian is obtained by replacing the number l2 with the operator J2,

H = J2

2μr2
e
− (J2)2

2kμ2r6
e

. (2.4.58)

The energy levels of the above Hamiltonian are those given by (2.4.48) that
in turn yield the spectrum (2.4.47) for the absorbed frequencies given in the fifth
column of Table 2.3 on page 103. The very good fit that (2.4.47) provides to the
experimental data confirms the validity of the above classical considerations. From
the experimental data in the second column in Table 2.3 on page 103, the values
obtained for the parameters bHCl and dHCl are

bHCl = 10.438 cm−1, dHCl = 0.00046 cm−1. (2.4.59)

The fact that dHCl is orders of magnitude smaller than bHCl verifies that the rigid
rotator is a remarkably good model of the rotating diatomic molecule.
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As discussed in this section, the rigid rotator provides a good description of the
absorption spectra of a diatomic molecule. To obtain a more accurate description,
however, corrections and modifications had to be incorporated, providing an even
better understanding of the physics. Here the diatomic molecule has been described
as a quantum rotator, and in Chap. 1 it was described as a quantum oscillator. The
simple dumbbell model of a diatomic molecule as a non-rigid rotator that undergoes
harmonic oscillations provides a good description of the experimental data. These
models are benchmarks, and the physics of the real quantum systems is understood
by the agreement with and deviations from these benchmarks.

2.5 Angular Momentum States and Calculation
of Probabilities

According to Fundamental Postulate II of quantum mechanics (See Chap. 1,
Sect. 1.4.), the state of a quantum system is described by a density or statistical oper-
ator. In the space where experiments take place, a state with angular momentum j

for which any component m is equally probable is described by a state operator

ρj = (Tr Λj )−1Λj = 1

(2j + 1)

j
∑

m′=−j

|j,m′〉〈j,m′| . (2.5.1)

Λj acts the unit operator in �j and is also the projection operator onto the space �j

from a larger space � ⊃ �j . The fact that any component m is equally probable for
the state ρj is established as follows.

According to Fundamental Postulate II of quantum mechanics, the probability of
an observable A in the state ρj is calculated as the Born probability

Pρj (A) = Tr(Aρj) . (2.5.2)

Choosing the observable A to be the operator |j,m〉〈j,m|, which represents the
property that the three-component of angular momentum is m, the probability of
obtaining a specific value m for the component of J3 along the arbitrary direction e3
in the state ρj is (Problem 2.25)

Pρj (|j, m〉〈j, m|) = Tr(|j,m〉〈j,m|ρj ) = 〈j,m|ρj |j,m〉 ,

= 1

2j + 1

j
∑

m′=−j

〈j,m|j,m′〉〈j,m′|j,m〉 = 1

2j + 1
.

(2.5.3)
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The above equation reveals that each value m for the three-component of angular
momentum J3 is equally likely in the state ρj of (2.5.1). If an arbitrary direction in
space is denoted e3, then according to (2.5.3), the values for the component J3 = e3 ·
J are m = −j, j−1, . . .+j , and each of these values will appear in a measurement
of J3 with the same probability 1/(2j + 1).

If, for a specific quantum system, no physical quantity distinguishes a direction,
then the quantum number m is irrelevant. All that can be said is that the quantum
system is in a state ρj as given in (2.5.1) with angular momentum j in which any
component of angular momentum m is equally probable.

The quantum mechanical state ρj describes an ensemble of individual micro-
systems, which could, for example, be a large number N of diatomic molecules
such as HCl or CO. The number N should be a large so that statistical statements
can be made: N could be on the order of Avogadro’s number 6.02×1023 although in
some cases it could be as small as 200 or even smaller. If a preferred direction e3 is
distinguished, for example, by the direction of a magnetic field, then a measurement
of the angular momentum along the direction e3 would find N/(2j + 1) diatomic
molecules with angular momentum component h̄m for each value of m = −j,−j+
1, . . . ,+j .

If the value of J3 is measured in the state ρj of (2.5.1), then according to
Fundamental Postulate II, the expectation value for the observable J3 is

Tr(J3ρ
j ) = 1

2j + 1

j
∑

m=−j

Tr(J3|jm〉〈jm|)

= 1

2j + 1

j
∑

m=−j

〈jm|J3|jm〉 = 1

2j + 1

j
∑

m=−j

m = 0 . (2.5.4)

The expectation value for the three-component J3 of angular momentum is zero,
not because all N molecules have a zero three-component, but because there are
an equal number N/(2j + 1) of molecules with component m and with component
−m, so that the average value is zero.

Since the observables Ji do not commute, their values measured in a pure state
|j,m〉〈j,m| will not be known with certainty. The expectation value of the operator
J3 and J 2

3 in the eigenstates |j,m〉 of J2 and J3 is easily obtained from (2.3.35) :

〈j,m|J2|j,m〉 = h̄2j (j + 1), 〈j,m|J3|j,m〉 = h̄m . (2.5.5)

The uncertainty of the observable A in the state ρ is

ΔρA =
√

Tr(ρA2)− (Tr(ρA))2 . (2.5.6)
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As a consequence, the uncertainty of the observable J3 in the state ρ =
|j,m〉〈j,m| is

Δ|j,m〉J3 =
√

Tr(|j,m〉〈j,m|J 2
3 )− (Tr(|j,m〉〈j,m|J3))2

=
√

〈j,m|J 2
3 |j,m〉 − 〈j,m|J3|j,m〉2 = h̄

√

m2 −m2 = 0 . (2.5.7)

The above result is expected since |j,m〉 is an eigenstate of J3.
The expectation values of J1 and J 2

1 in the state |j,m〉〈j,m| follow immediately
from Examples 2.3.1 and 2.3.2 on page 81, respectively, and are given below for
m = j :

〈j, j |J1|j, j 〉 = 0, 〈j, j |J 2
1 |j, j 〉 =

h̄2j

2
(2.5.8a)

Corresponding formulas for J2 are calculated similarly and are as follows:

〈j, j |J2|j, j 〉 = 0, 〈j, j |J 2
2 |j, j 〉 =

h̄2j

2
(2.5.8b)

Although the average values of J1 and J2 are zero in the eigenstate |j, j 〉 of J3
for which m = j , the average of the squares of their values 〈jj |J 2

1 |jj 〉 and
〈jj |J 2

2 |jj 〉 are not; therefore, the uncertainties Δ|j,j〉J1 and Δ|j,j〉J2) are not zero.
The uncertainty for the operator J1 in the state |j, j 〉 is

Δ|j,j〉J1 =
√

〈j, j |J 2
1 |j, j 〉 − 〈j, j |J1|j, j 〉2 = h̄

√

j

2
. (2.5.9a)

Similarly,

Δ|j,j〉J2 = h̄

√

j

2
. (2.5.9b)

Equation (2.5.9a) reveals that in a measurement of J1 in the pure state |j, j 〉,
the values for the component J1, which is “orthogonal” to J3, will not be zero
with certainty. This result is not intuitive: In classical physics, if the vector j =
j1 e1 + j2 e2 + j3 e3 points in the e3-direction, then j1 = j2 = 0, and |j| = j3.
Thus j2

1 and j2
2 are with certainty zero. In contrast (2.5.9) shows that there is

“uncertainty” regarding the values of J1 and J2. This feature is a quantum effect
and occurs because

〈j, j |J2 − J 2
3 |j, j 〉 = h̄2[j (j + 1)− j2] = h̄2 j �= 0. (2.5.10)
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It immediately follows from (2.5.10) that the expectation value of J 2
1 + J 2

2 must be
nonzero:

〈j, j |J 2
1 + J 2

2 |j, j 〉 = 〈j, j |J2 − J 2
3 |j, j 〉 = h̄2[j (j + 1)− j2] = h̄2 j �= 0.

(2.5.11)

This feature, which is very strange classically, is connected with the uncertainty
relation (Problem 2.26).

2.6 Relationship Between SU(2) and SO(3)

For integer values of j , the spaces�j are representation spaces of the rotation group
SO(3); for half-integer j , the spaces �j are representation spaces of the group
SU(2), which is in a two-to-one correspondence with the rotation group: To every
rotation � ∈ SO(3) there correspond two elements U and −U in SU(2).

For quantum mechanics, where the observable quantities are the probabilities,
this two-to-one correspondence does not make any difference. To illustrate this
consider the case of an observable represented by the projection operator |ψ〉〈ψ|
and a pure state represented by the vector φ. The probability for the observable
|ψ〉〈ψ| in the state φ is given, not by the matrix element (ψ, φ), but instead by the
absolute value of the matrix element:

Pφ(|ψ〉〈ψ|) = Tr (|ψ〉〈ψ|φ〉〈φ|) = |〈ψ|φ)|2 . (2.6.1)

In the spaces �j , where j is a half-integer, for a rotation R there exist both U(R)

and−U(R). For half-integer values of j , the rotated state of the state vector φ ∈ �j

is, therefore, given by Uφ and −Uφ. But the probability of the observable ψ in the
transformed state Uφ or the transformed state −Uφ is the same:

P−Uφ = |(ψ,−Uφ)|2 = | − (ψ,Uφ)|2 = |(ψ,Uφ)|2 =PUφ (2.6.2)

The physical state, instead of being represented by the vector φ, is represented by
the one-dimensional subspace spanned by the vector {φ(α) : φ(α) = eiαφ}, where
α is real, or, equivalently, by the projection operator |φ〉〈φ| onto this subspace.

Symmetry transformations such as the group of rotations of the apparatus in
three-dimensional space are not described by representations of the rotation group,
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but instead by “representations up to a factor,” which are also called “projective
representations.” The set of “projective representations” of the rotation group
SO(3) is the same as the set of representations of SU(2), and the set of all
unitary, irreducible representations of SU(2) are those in the spaces �j , j =
0, 1/2, 1, 3/2 . . . . Thus SU(2) is the “quantum mechanical symmetry group,” the
symmetry group for the quantum mechanical states.

Implicitly this same result was obtained at the beginning of the Sect 2.3
where representations were obtained for the commutation relations of angular
momentum (2.3.1). These commutation relations are the same as the commutation
relations of the Lie algebra SO(3) or of the enveloping algebra E (SO(3)) and
the enveloping algebra E (SU(2)). For every integer or half-integer value of j ,
j = 0, 1/2, 1, 3/2, . . . there is a (2j + 1)-dimensional representation space �j

in which this Lie algebra acts like the algebra of angular momentum operators.
It indeed happens that for every integer and half-integer value of j , there

exist quantum physical systems with angular momentum h̄j . Every value of
angular momentum allowed by quantum theory is also realized in nature: angular
momentum Ji and, specifically, the angular momentum of an extended object about
its center of mass or the spin Si = Ji − Li in (2.2.15) can have either integer or
half-integer values. Electrons, protons, nuclei, and baryons are but a few of many
examples of such systems in non-relativistic and relativistic physics. It is remarkable
that from the probability interpretation of quantum mechanics (2.6.1) it follows that
spin can take integer and half-integer values, and that this is borne out by nature.

Whereas the orbital angular momentum Li of a mass point can be defined in
terms of its momentum Pk and position Qj , the general angular momentum Ji is an
independent observable defined solely by its commutation relation (2.3.1) as linear
operators in a linear space. The observables Ji have their origins in the groups of
transformations of space-time: they are the “generators” of transformations in the
space of quantum physical states that represent the rotations R (of the detection
apparatus relative to the preparation apparatus) in three-dimensional space, xi →
(Rx)i . Similarly, the momenta Pi are the generators of space translations xi → xi+
ai , and the Qi are related to the generators mQi of pure Galilean transformations
xi → xi + vi t , where m is the mass. The Hamiltonian is the generator of time
translations t → t+ τ . These transformations form the Galilean group of symmetry
transformations for the non-relativistic space-time. A similar situation holds for the
relativistic space-time where the symmetry group is the Poincaré group.

2.7 Summary

The classical orbital angular momentum l of a mass point with position x and
momentum p is

l = x× p .
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Using the correspondence principle, the quantum mechanical orbital angular
momentum L is

L = Q× P ,

where Q and P are, respectively, the position and momentum operators for the
mass point. Using the Heisenberg equations of motion, the quantum orbital angular
momentum operators are found to obey the algebra

[Li,Lj ] = ih̄ εijkLk .

The total angular momentum operators Ji are the sum of the orbital angular
momentum operators Li and spin angular momentum operators Si ,

Ji = Li + Si .

The operators Ji and Si each satisfy the same algebra obeyed by the Li . Conse-
quences of the algebra are determined using algebraic techniques. Since the operator

J2 = J 2
x + J 2

y + J 2
z ≡ JkJk

commutes with Ji , vectors are chosen that are eigenvectors of J2. Vectors are also
usually arbitrarily chosen to be eigenvectors of J3. The orthonormal basis vectors
|j,m〉 satisfy

J2|j,m〉 = h̄2(j + 1)|j,m〉 , J3|j,m〉 = h̄m|j,m〉 ,

where j = 0, 1/2, 1, 3/2, . . . and m = j, j − 1, . . . ,−j + 1,−j. Since J2

commutes with each of the Ji , there exists no operator that can be formed from
the Ji that changes the value of j .

The (non-hermitian) raising operator J+ and lowering operator J− are defined
by

J± ≡ J1 ± iJ2 ,

and are introduced because they satisfy

J3J±|j,m〉 = h̄(m± 1)J±|j,m〉 ,

revealing that J±|j,m〉 is either proportional to |j,m ± 1〉 or is zero. Including
proportionality factors,

J±|j,m〉 = h̄
√

(j +m)(j ±m+ 1) |j,m± 1〉 .
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The space �j is a (2j + 1)-dimensional space that is the orthogonal direct sum
of the one-dimensional spaces �j

m and is written

�j =
j
∑

m=−j

⊕�j
m ,

where each space �j
m is spanned by the vector |j,m〉.

For a quantum rotator the angular momentum operators Ji and the position
operators Qi representing the internuclear separation satisfy the algebra

[Qi,Qj ] = 0 , [Ji, Jj ] = ih̄εijkJk , [Ji,Qj ] = ih̄εijkQk .

The operators Q±1 ≡ ∓ 1√
2
(Q1 ± iQ2) do not commute with J3 so, as a

consequence, change m, while neither Q3 nor Q±1 commute with J2, so all three
operators change j .

A rotator is a physical system that possesses only rotational degrees of freedom.
The diatomic molecule is a simple physical system that can, in some approximation,
be viewed as such a system. The rotator Hamiltonian for a rigid, stationary, spinning
diatomic molecule is

H = J2

2I
,

where I is the moment of inertia of molecule. The energy eigenvalues of the above
rotator Hamiltonian are

Ej = h̄2j (j + 1)

2I
.

The splitting between rotational energy levels is on the order of 10−3 eV. Transitions
between rotator states with different values of m or different values of � can be
caused by the dipole operator D = qQ because it neither commutes with L2 nor
with L3. At higher values of orbital angular momentum, the rotator is no longer
rigid. As a result of elastic potential energy, the Hamiltonian becomes

H = J2

2μr2
e
− (J2)2

2kμ2r6
e
+O

(

(J2)3
)

,

where re is the distance between the two nuclei of the diatomic molecule when
j = 0.
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Problems

For Sect. 2.2

2.1 What operator relation results from taking the adjoint of the operator equation
[L1, L2] = ih̄L3?

2.2 Using (2.2.5) and (2.2.6), derive [Li,Qj ] = iεijkQk .

For Sect. 2.3

2.3 Use the commutation relations of angular momentum (2.3.1) to verify that
[J2, Ji] = 0 where i = 1, 2, 3 = x, y, z.

2.4 Verify the equation J±J∓ = J2 − J 2
3 ± h̄J3.

2.5 Calculate the matrix element 〈j,m|J2|j,m〉.
2.6 Calculate the matrix element 〈j,m|J1J2 − J2J1)|j,m〉. Is the operator in the
matrix element hermitian?

2.7 Calculate the matrix element (J−|j,m+ 1〉, J+|j,m− 1〉) using the following
two methods:

(a) Calculate J−|j,m + 1〉 and J+|j, n − 1〉 directly and then compute the scalar
product.

(b) Use the fact that J
†
− = J+ and write the matrix element as 〈j,m+ 1|J 2+|j,m−

1〉. Calculate J 2+|j,m− 1〉, and then determine the scalar product.

2.8 The baryons Σ+,Σ0, and Σ− are (approximately) eigenstates of isospin.
Isospin obeys the algebra of angular momentum but apparently has nothing to
do with ordinary angular momentum. Assume Σ+,Σ0, and Σ− have isospin
I (= j)= 1 , and third component of isospin I3(=m)= 1, 0, and−1, respectively.

(a) Draw a weight diagram labeling the states Σ+,Σ0, and Σ−.
(b) Assume that the mass operator M is given by M =M01+M1I3 when M0 and

M1 are constants. Then for example,

mΣ+ = 〈1, 1|(M01+M1I3|1, 1〉.

Using MΣ+ = 1189 Mev and M0 = 1193 Mev, calculate M0 and M1.
(c) What is the predicted mass for the baryon Σ−?
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2.9

(a) Show that the matrices σi with matrix elements 2〈j = 1
2 ,m|Ji |j = 1

2 ,m′〉 are
given by

σ1 =
(

0 1
1 0

)

, σ2 =
(

0 −1
1 0

)

, σ3 =
(

1 0
0 −1

)

.

The σi are the Pauli spin matrices.
(b) Show that these matrices satisfy

{σi, σj } ≡ σiσj + σjσi = 2

(

1 0
0 1

)

δij .

2.10 Construct normalized eigenvectors |j = 1
2 ,m1〉,

|j = 1/2,m1〉 = α|j = 1/2,m = 1/2〉 + β|j = 1/2,m = −1/2〉,

such that the |j,m1〉 are simultaneous eigenvectors of J2 and J1 satisfying

J2|j,m1〉 = h̄2j (j + 1)|j,m1〉,
J1|j,m1〉 = h̄m1|j,m1〉.

Calculate the allowed values of m1.

2.11 Verify that (2.3.61) is correct by expressing L3 as given in (2.3.54) in terms
of the spherical operators aκ given in (2.3.56).

2.12 In the i th Cartesian dimension let |ni〉 be an eigenvector of the harmonic
oscillator number operator Ni = a

†
i ai satisfying Ni |ni〉 = ni |ni〉.

(a) Using (1.2.49) and (1.2.50) , respectively, calculate ai |ni〉 and a
†
i |ni〉.

(b) Using the expression (2.3.54) for L3, calculate L3 |n1, n2〉 where |n1, n2〉 =
|n1〉 ⊗ |n2〉.

(c) When an eigenvector |m〉 of L3 is written as a linear combination of the various
eigenvectors |n1, n2〉, explain why the sum n1 + n2 must be the same for each
eigenvector |n1, n2〉 in the linear combination.

(d) Calculate the eigenvalue m of the operator L3 for the eigenvector
|n1 = 0, n2 = 0〉.

(e) Let the normalized eigenvector |m〉 = α|n1 = 1, n2 = 0〉 + |n1 = 0, n2 = 1〉
where α and β are constants. Calculate the two allowed values of m and, in
terms of eigenstates of the two-dimensional harmonic oscillator, determine the
normalized eigenstate associated with each value of m.

2.13 Let |m〉 be an eigenstate of L3 that satisfies L3 |m〉 = h̄ m |m〉. Express |m〉
in terms of two-dimensional harmonic oscillator states |n1, n2〉 as follows: |m〉 =
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α|2, 0〉 + β |1, 1〉 + γ |0, 2〉, where α, β, and γ are constants. Calculate the three
allowed values of m and, in terms of eigenstates of the two-dimensional harmonic
oscillator, determine the normalized eigenstate associated with each value of m.

For Sect. 2.4

2.14 Show that the following four operators all commute: J3, J2 = JiJi , Q2 =
QiQi and Q · J = QiJi , where the repeated index i is summed from 1 to 3. Explain
why states of a rotator can be labeled by the eigenvalues of these four operators and,
perhaps, others.

2.15 Using only (2.4.1b) determine the third component m of the angular momen-
tum of the vector Q0|r, k0, j,m〉 where Q0 = Q3.

2.16 Calculate the commutator [J3,∓ 1√
2
(Q1 ± iQ2)] = [J3,Q±1] with the aid of

(2.4.1b). Use the result to determine the third component of angular momentum of
the vector Q±1|r, k0, j,m〉.
2.17 Just using words without any calculations, explain why εikj εikm = 2δjm.

2.18 Calculate [J2,Q1] and [J2,Q2]. Verify that the second relation follows from
the first by cyclically permuting 1, 2 and 3 (i.e., by making the substitution 1→ 2,
2→ 3, 3→ 1). From your result for [J2,Q2] cyclically permute 1, 2 and 3 to write
the result for [J2,Q3].
2.19 Calculate the commutator [J2, 1√

2
(Q1− iQ2)] with the aid of (2.4.1). Use the

result to determine the angular momentum of the vector

1√
2
(Q1 − iQ2)|r, k0, j,m = −j 〉.

2.20 What spaces ��′
m′ are obtained when the operator(Q3)

2 acts on the space ��
m?

2.21 What spaces��′
m′ are obtained when the operators (Q±)2 act on the space��

m?

2.22 The classical quantity corresponding to Q · J is r · l. Calculate the numerical
value of r · l for the rigid rotator.

2.23

(a) Using the values of bHCl and dHCl given in (2.4.59), calculate the internuclear
distance re at � = 0 and the spring constant k for the diatomic molecule HCl.

(b) Calculate the increase in the internuclear distance r as a function of �.
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2.24

(a) Consider electromagnetic dipole decay of a diatomic molecule from the energy
level E�+1 to E�. Show that the frequency ν�,�+1 of the photon emitted in such
a decay is given by

ν�,�+1 = h

4π2I
(�+ 1).

(b) Using the data in the table below, in which the values �+1 and the corresponding
experimental values for frequencies ν�,�+1 in the far infrared for HCl17 are
given, construct a graph of ν�,�+1 vs. �+ 1 and determine the moment of inertia
I of the HCl molecule from the slope of the graph.

�+ 1 ν�,�+1(cm−1)

4 83.03
5 104.1
6 124.30
7 145.03
8 165.51
9 185.86

10 206.38
11 226.50

(c) What is the energy of the � = 1 eigenstate of the HCl molecule?

For Sect. 2.5

2.25 Verify (2.5.3).

2.26

(a) Calculate
(

Δ|j,m〉J1
) (

Δ|j,m〉J2
)

and then specialize to the case m = j .
(b) Make the incorrect assumption that J2|j, j 〉 = h̄2j2|j, j 〉 and show that this

implies 〈j, j |J 2
1 |j, j 〉 = 〈j, j |J 2

2 |j, j 〉 = 0. How do these results lead to a
contradiction with the Heisenberg uncertainty principle?

17G. Herzberg, Molecular Spectra and Molecular Structure (D. Van Nostrand: New York,1966).



Chapter 3
Combinations of Quantum Physical
Systems

3.1 Introduction

The structure of quantum systems is studied by “looking at them” with light or
with other quantum systems such as electrons that are usually more fundamental
and have less structure than the physical system being investigated. If a quantum
particle has no internal structure and is a point object, it is fundamental and is called
an elementary particle.

For all other particles, whether they appear to be fundamental or composite
depends on the energies used to investigate them. Atoms at scattering energies lower
than the first excited energy level appear to be fundamental, structureless objects that
can be described as elementary particles. Molecules also appear to be structureless
at sufficiently low energies. But as the energy used to probe the quantum system
increases, structure becomes evident. For example, the structure of the molecular
rotator begins to manifest itself at energies of about 10−3 eV (Chap. 2, Sect. 2.4),
and the structure of the oscillator appears at energies of 0.1 eV (Chap. 1, Sect. 1.3.2).

As a result of Rutherford’s scattering experiments, an atom or molecule is viewed
as consisting of positive nuclei with electrons swirling at an average distance of
about 10−10 m, a distance that is large compared with the “size” of the nucleus,
which is approximately 10−15 m. In his experiments Rutherford showed that most
alpha particles directed toward atoms were barely deflected while a few were
deflected at very large angles. He thus concluded that most of the mass of an atom is
concentrated in a small nucleus rather than being uniformly distributed throughout
the atom. The nucleus appears to be point-like when examined with a probing
projectile that has an energy less than 103 eV. As the energy of the probe (photon,
alpha particle, electron) used to study the nucleus is increased, the structure of the
nucleus manifests itself. At energies of 0.1 MeV= 105 eV, the structure of a nuclear
rotator appears, and at slightly higher energies (1–10 MeV) the nucleus becomes an
oscillator. At still higher energies, the individual nucleons (protons and neutrons) in
the nucleus reveal themselves. In electron-nucleus scattering, at lower energies the
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electrons scatter off of the entire nucleus. As the energy of the electrons is increased,
the electrons instead scatter off of individual nucleons, which are called hadrons.

Hadrons (neutrons, protons, etc.) appear to be point-like particles at energies
below about 1 GeV = 109 eV, but at higher energies they reveal their structure by
becoming relativistic rotators and relativistic oscillators. And at still higher energies
they reveal their quark structure. Just as atoms are “made of neutrons, protons and
electrons,” hadrons are made of quarks that may or may not be fundamental. In
many respects hadrons are similar to molecules because both are understood as
being composite. Unlike neutrons, protons, and electrons, which are the constituents
of atoms, free quarks, which are the constituents of hadrons, have not been directly
detected experimentally at this time in history: they are confined within the hadrons.

The process of deciding which objects in nature are fundamental is ongoing:
elementary particles in physics are the exception rather than the rule. At the present
time the photon is considered to be an elementary “particle” as are quarks, the
electron, muon, tau, and their associated neutrinos. At least experiments involving
these particles have not yet revealed any internal structure.

If the energy of an experiment is sufficiently high to reveal that a “particle” has
internal structure, physicists build mathematical models in an effort to explain this
structure. There are two general approaches: The physicist determines (1) what the
system does (vibrates, rotates, etc.) or (2) from what it is made (quarks, protons,
neutrons, electrons, nuclei, etc.).

So far in this text, approach (1) has been emphasized. When studying diatomic
molecules, their vibrational and rotational spectra were discussed without discussing
details regarding the binding of possible constituent electrons and nuclei. In fact,
if the diatomic molecules were to be treated strictly from the constituent point of
view, it would be necessary to discuss the binding of quarks into neutrons and
protons, the binding of neutrons and protons into nuclei, the Coulomb binding of
electrons and a nucleus into an atom, and the covalent bonding of atoms to form
molecules. Describing molecules in terms of their constituent quarks or in terms
of their constituent hadrons and electrons would be very complicated. In the range
of molecular physics (10−3–10−1 eV), it would be totally unprofitable. Complex
molecules are more profitably analyzed in terms of their motions: rotations,
vibrations, and the motion of single electrons for the electronic spectra of molecules.

Studying a physical system in terms of constituents (what the system is made
from) is often more productive if, in some approximation, the system can be thought
of as being made from a small number of objects. This is the approach taken when
analyzing the hydrogen atom as a bound state of a proton and an electron. Of course,
this description of the hydrogen atom is only approximate: the proton itself is not
a fundamental object, and the electron, which may or may not be fundamental, has
intrinsic properties such as spin and a magnetic moment. But at the scale of atomic
energies and at an accuracy that does not reveal the fine structure and magnetic
moments of the constituents, the simple, two-particle model works very well in
predicting the energy levels of the hydrogen atom.

In Sect. 3.2 it will be shown that the Hamiltonian of a free particle moving in
three dimensions can be thought of as the sum of the Hamiltonians of three free
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particles, each moving in one dimension. As an extension of this idea, it will then
be shown that a Hamiltonian for two interacting particles can be split into a sum of
two, one-body Hamiltonians: the Hamiltonian for the motion of the center of mass
and the Hamiltonian for motion relative to the center of mass.

In Sect. 3.3 the properties of vectors in three-dimensional space are used to
motivate the use of the direct product of linear, scalar-product spaces, the essential
mathematical concept required for combining quantum physical systems. The defin-
ing mathematical properties of these spaces are then discussed. The examples of
Sect. 3.2 are generalized, and Fundamental Postulate IV is formulated for combining
two (or more) quantum physical systems. The procedure of dividing two-particle
motion into the motion of its constituents and then rewriting the motion in terms
of center-of-mass motion and motion relative to the center of mass as discussed
in Sect. 3.2 is shown to actually be an example of the use of of Fundamental
Postulate IV. Finally, the concept of “complete sets of commuting observables” or
“complete sets of commuting operators” is introduced. The mechanism is discussed
by which experimental observations both provide guidance and impose constraints
on the choice of “complete sets of commuting observables.”

In Sect. 3.4 Postulate IV is applied to a specific physical example. When a
diatomic molecule is studied with energies �10−2 eV, only rotational states are
excited and the molecule can be described as a rotator. When the energy is increased
to about 0.1 eV, the molecule begins vibrating with the result that new energy levels
are observed, each of which contains an entire rotational band. The transition of the
diatomic molecule from a rotator to a vibrating-rotator provides a specific example
of the application of direct-product spaces and the identification of complete sets of
commuting operators.

Combining two physical systems with respective angular momenta ja and jb

is discussed in Sect. 3.6. The combined rotational motion is described by a direct-
product space. But angular momentum bases |ja,ma〉 ⊗ |jb,mb〉 that are the direct
product of the angular momentum bases |ja,ma〉 and |jb,mb〉 of the two con-
stituents, respectively, typically are not physical. A basis is said to be physical if it
consists of eigenstates in which the physical system appears. Stationary states (states
that do not change in time) are always eigenstates—or mixtures of eigenstates—of
the Hamiltonian H , so physical systems such as atoms and molecules are eigenstates
of the Hamiltonian. Linear combinations of bases |ja,ma〉 ⊗ |jb,mb〉 yield new
vectors that are eigenstates of the Hamiltonian, total angular momentum and 3-
component of total angular momentum. The transition coefficients used to construct
physical bases are called Clebsch-Gordan or Wigner coefficients and are discussed
in detail.
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3.2 Separation of a Hamiltonian

3.2.1 Introduction

The examples in this section are used to motivate and provide the background to
understand the important concept of the direct-product space, a new mathematical
tool needed to define the combination of two or more quantum systems. The
mathematical notation will first be used here intuitively before being defined in
Sect. 3.3.1 below. To introduce the concept of direct-product spaces, it is noted that a
Hamiltonian of a non-interacting particle in three-dimensional space can be thought
of as the sum of three Hamiltonians, each describing a non-interacting particle
moving in a one-dimensional space. As a second example, a two-body Hamiltonian
is considered that describes two particles in three-dimensional space interacting via
a potential that depends only on the relative positions of the particles. By changing to
center-of-mass coordinates and relative coordinates, the two-body Hamiltonian can
be written as the sum of two, one-body Hamiltonians, one describing the motion of
the center of mass and the other the relative motion resulting from an interaction
potential. The technique for separating the two-body Hamiltonian into a sum of
two, one-body Hamiltonians is important in its own right: it drastically simplifies
the two-body problem by reducing it to two, one-body problems.

3.2.2 A Non-interacting Particle in Three-Dimensional Space
Viewed as Three Non-interacting Particles, Each Moving
in a One-Dimensional Space

A non-interacting, spinless elementary particle in three-dimensional space is char-
acterized by its mass m and is described by the Hamiltonian

H = 1

2m
P2 = 1

2m

[

(P1)
2 + (P2)

2 + (P3)
2
]

. (3.2.1)

The momentum operators Pi, i = 1, 2, 3, fulfill the commutation relations

[

Pi, Pj

] = 0 . (3.2.2)

The particle in three-dimensional space can be considered as a combination of three
particles, each moving in one-dimensional space and described, respectively, by the
Hamiltonians

H1 = P 2
1

2m
, H2 = P 2

2

2m
, H3 = P 2

3

2m
. (3.2.3)
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The eigenvectors of the operator Pi are denoted |pi〉 and satisfy

Pi |pi〉 = pi |pi〉 , −∞ < pi < ∞ , i = 1, 2, 3 . (3.2.4)

A basis system for the Hamiltonian (3.2.1) is

|p〉 ≡ |p1, p2, p3〉 ≡ |p1〉 ⊗ |p2〉 ⊗ |p3〉 . (3.2.5)

To indicate, for example, that H1 only operates on the space spanned by |p1〉 it is
written in the form H1 ⊗ 1 ⊗ 1. Here, without being mathematically precise, the
direct-product symbol ⊗ has been introduced to indicate that the spaces spanned
by |p1〉, |p2〉, and |p3〉 are independent and that the operator H1, for example, only
operates on the space spanned by |p1〉. This intuitive introduction to direct-product
spaces provides a foundation for understanding the mathematical discussion in the
following section.

Letting H1 operate on |p〉,

H1 |p〉 = (H1 ⊗ 1⊗ 1) (|p1〉 ⊗ |p2〉 ⊗ |p3〉) ,

= H1 |p1〉 ⊗ 1|p2〉 ⊗ 1|p3〉 ,

= P 2
1

2m
|p1〉 ⊗ |p2〉 ⊗ |p3〉 ,

= p2
1

2m
|p〉 .

(3.2.6)

The importance of the above equation results not from the equation itself, which is
almost trivial, but rather from the fact that it introduces the concept of direct-product
spaces. If the space of physical states spanned by |p1〉 is denoted H1 etc., then the
space of physical states spanned by (3.2.5) is denoted by

H ≡H1 ⊗H2 ⊗H3 . (3.2.7)

The space H is said to be the direct product of the spaces H1, H2, and H3.
Operators A, B, and C that operate, respectively, in spaces H1, H2, and H3 are
denoted

A ≡ A⊗ 1⊗ 1 , B ≡ 1⊗ B ⊗ 1 , C ≡ 1⊗ 1⊗ C . (3.2.8)

Using direct-product notation, the Hamiltonian (3.2.1) can be written in the form

H = H1 ⊗ 1⊗ 1 + 1⊗H2 ⊗ 1 + 1⊗ 1⊗H3

=
(

P 2
1

2m
⊗ 1⊗ 1 + 1⊗ P 2

2

2m
⊗ 1 + 1⊗ 1⊗ P 2

3

2m

)

. (3.2.9)
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Similarly, the momentum operators are

P1 ≡ P1 ⊗ 1⊗ 1 , P2 ≡ 1⊗ P2 ⊗ 1 , P3 ≡ 1⊗ 1⊗ P3 . (3.2.10)

The space Hi is spanned by the set of continuous eigenvectors |pi〉, which
implies that for every vector φi ∈Hi , i = 1, 2, 3, can be written as

φi =
∫ ∞

−∞
dpi |pi〉〈pi |φi〉 , i = 1, 2, 3 . (3.2.11)

Thus the space Hi is the set of all φi :

Hi ≡
{

φi |φi =
∫ ∞

−∞
dpi |pi〉〈pi |φi〉

}

, i = 1, 2, 3 . (3.2.12)

An eigenvector |xi〉 of the position operator Qi satisfies

Qi |xi〉 = xi|xi〉 , i = 1, 2, 3 , (3.2.13)

and is another basis vector that spans the space Hi of physical states of a non-
interacting particle moving in the i th dimension. In analogy with (3.2.11),

|xi〉 =
∫ ∞

−∞
dpi |pi〉〈pi |xi〉 . (3.2.14)

From the commutation relation of the momentum and position operator [Q1, P1] =
ih̄1 and the mathematical assumptions about the set of functions 〈pi |φi〉 that permit
the expansion (3.2.11), it is possible to prove that1

〈p1|x1〉 = 1√
2πh̄

e−ip1x1/h̄ . (3.2.15)

Corresponding relations are valid for p2, x2 and p3, x3 so that

〈p|x〉 = 1√
2πh̄

e−ipx/h̄ , (3.2.16)

where x and p are, respectively, x1, p1; x2, p2 or x3, p3.
The basis system |xi〉 that spans the space Hi for one-dimensional motion can

immediately be generalized to three dimensions, and the space of physical states H

1See A. Bohm, Quantum Mechanics: Foundations and Applications 3rd Ed. Springer, New York,
2008, eq. (7.50).
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in (3.2.7) is spanned by the basis system

|x〉 ≡ |x1, x2, x3〉 ≡ |x1〉 ⊗ |x2〉 ⊗ |x3〉 . (3.2.17)

With the aid of (3.2.14) and (3.2.16), the above relation becomes

|x〉 =
∫ ∞

−∞
dp1 |p1〉 1√

2πh̄
e−ip1x1/h̄ ⊗

∫

dp2 |p2〉 1√
2πh̄

e−ip2x2/h̄

⊗
∫

dp3 |p3〉 1√
2πh̄

e−ip3x3/h̄

=
∫ ∞

−∞
d3p |p1〉 ⊗ |p2〉 ⊗ |p3〉(2πh̄)−3/2 e−ip·x/h̄ =

∫ ∞

−∞
d3p |p〉〈p|x〉 .

(3.2.18)

The transition coefficients 〈p|x〉, which are the components of the (generalized)
basis vectors |x〉 along the (generalized) basis vectors |p〉, are the plane waves in
three-dimensional space,

〈p|x〉 = 〈x|p〉∗ = (2πh̄)−3/2e−ip·x/h̄ . (3.2.19)

Plane waves are a mathematical idealization that cannot be attained exactly in the
laboratory. According to the Dirac basis expansion, a physical state ψ ∈H can be
expanded either with respect to the basis system |p〉 or |x〉. Using the completeness
relations (A.4.44)

1 =
∫ ∞

−∞
d3p |p〉〈p| , 1 =

∫ ∞

−∞
d3x |x〉〈x| , (3.2.20)

ψ can be expanded as follows:

ψ =
∫ ∞

−∞
d3p |p〉〈p|ψ〉 , ψ =

∫ ∞

−∞
d3x |x〉〈x|ψ〉 . (3.2.21)

The Schrödinger wave function ψ(x) is obtained by taking the (generalized) scalar
product of (3.2.21) with |x〉 :

ψ(x) ≡ 〈x|ψ〉 =
∫ ∞

−∞
d3p 〈x|p〉〈p|ψ〉 = (2πh̄)−3/2

∫ ∞

−∞
d3p 〈p|ψ〉eip·x/h̄ .

(3.2.22)

The Schrödinger wave function ψ(x) as given in (3.2.22) is a free-particle wave
packet that is a superposition of plane waves.
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A non-interacting particle in three-dimensional space can be understood math-
ematically as a combination of three particles, each moving in a different one-
dimensional space. Equivalently, the Hamiltonian of a non-interacting particle
can be split into three Hamiltonians, each describing motion in a different one-
dimensional space. For two non-interacting particles moving in three-dimensional
space, the Hamiltonian can naturally be split into the Hamiltonians of its con-
stituents, which can then be further subdivided into the Hamiltonians of six
non-interacting particles, each moving in a one-dimensional space. The presence
of an interaction complicates the situation because it is usually more difficult, and
sometime impossible, to split a Hamiltonian into independent Hamiltonians.

3.2.3 Two Interacting Particles: Center-of-Mass Motion and
Relative Motion

Here a bound-state system is discussed in terms of the constituent picture with
attention restricted to cases for which the complex system can be approximated
as a bound state of two mass points with respective masses m1 and m2. An example
of such a system is the hydrogen atom, consisting of an electron and proton bound
by the Coulomb potential. A second example is the carbon monoxide molecule CO,
which is a bound state of carbon and oxygen resulting from covalent bonding.

The classical energy of this two-particle system is

Eclassical = p2
1

2m1
+ p2

2

2m2
+ U(x2 − x1) . (3.2.23)

In the above equation p1, p2, x1 and x2 are the respective momenta and positions
of m1 and m2. The potential energy U(x2 − x1) binds the mass points and, as is
usually the case, is assumed to depend only on the relative position x2 − x1 of the
constituents. The quantum Hamiltonian corresponding to (3.2.23) is given by

H = P2
1

2m1
+ P2

2

2m2
+ U(Q2 −Q1) . (3.2.24)

Guided by (3.2.7), the space of physical states H is the space

H =H1 ⊗H2 , (3.2.25)

where H1 is the space of states for the first mass point m1 in the three-dimensional
space, and H2 is the space of states for the second mass point m2. The generalized
eigenvectors |p1〉 that satisfy

P1|p1〉 = p1|p1〉 , (3.2.26)
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can be used as a basis system for H1. Similarly, the generalized eigenvectors |p2〉
span the space H2. A basis system for H is then

|p1, p2〉 ≡ |p1〉 ⊗ |p2〉 . (3.2.27)

According to the continuous basis expansion (3.2.11), the vectors φ of the space H
can be expanded as

φ =
∫∫

d3p1 d3p2 |p1, p2〉〈p1, p2|φ〉 , (3.2.28a)

where the 〈p1, p2|φ〉 are the momentum-space wave functions that depend on the
six components of momentum p1i , p2i . An alternative basis for H is |x1, x2〉 ≡
|x1〉⊗ |x2〉, which is a simultaneous eigenvector of Q1 and Q2. Thus every vector φ

can also be expanded with respect to |x1, x2〉,

φ =
∫∫

d3x1 d3x2 |x1, x2 〉〈x1, x2|φ〉 , (3.2.28b)

The continuous expansion coefficients 〈x1, x2|φ〉 are the position-space wave func-
tions; they are functions of the six coordinates x1i , x2i . The set of six coordinates
{x1i, x2i} span a space that is called the configuration space. The functions
〈x1, x2|φ〉 are also often called the configuration-space wave functions to emphasize
that the wave function φ(x1, x2) ≡ 〈x1, x2|φ〉 of a two-particle quantum system is
not a wave in the three-dimensional coordinate space �3 but instead represents a
“state” in the six-dimensional “configuration space”.

The relationship between the eigenvectors |x1, x2〉 and |p1, p2〉 is found by
replacing φ by |x1, x2〉 in (3.2.28a),

|x1, x2〉 =
∫ ∞

−∞
d3p1

∫ ∞

−∞
d3p2 |p1, p2〉〈p1, p2|x1, x2〉 ,

= (2πh̄)−3
∫ ∞

−∞
d3p1

∫ ∞

−∞
d3p2 |p1, p2〉e−i(p1·x1+p2·x2)/h̄ . (3.2.29)

The above equation is the generalization of (3.2.19) to the two-particle case. Using
direct-product notation, in the direct-product space H = H1 ⊗H2, the position
and momentum operators in (3.2.24) are

Q1 = Q1 ⊗ 1 , Q2 = 1⊗Q2 , (3.2.30a)

P1 = P1 ⊗ 1 , P2 = 1⊗ P2 . (3.2.30b)
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The operator U(Q2 −Q1) acts in both spaces H1 and H2. As a consequence, it
typically cannot 2 be written in the form U = U1 ⊗ 1+ 1⊗U2. The Hamiltonian,
therefore, also cannot be written as a sum of operators that operate either in H1 or
H2; this will always be the case for an interacting, two-particle system.

It is difficult to determine the eigenvalues of the Hamiltonian (3.2.24) in its
present form because it involves six momentum operators P1x, P1y, P1z, P2x, P2y,

P2z and six position operators Q1x,Q1y,Q1z,Q2x,Q2y,Q2z characteristic of a
two-body problem. The two-particle Hamiltonian can be simplified, however, by
writing it in terms of new operators that are chosen in such a way that the two-body
Hamiltonian is a sum of two, one-body Hamiltonians. To accomplish this task, first
note that the potential is not an arbitrary function of Q1 and Q2, but, according to
(3.2.24), only depends on the difference Q2 − Q1. As a consequence, the potential
depends only on the relative position operator Q defined by

Q = Q2 −Q1 . (3.2.31)

The correspondence between classical and quantum mechanics suggests using
the center-of-mass position operator QCM, where

QCM = m1Q1 +m2Q2

M
, M = m1 +m2 . (3.2.32)

The momentum operator P conjugate to the relative position operator Q in (3.2.31)
is

P = m1P2 −m2P1

M
. (3.2.33)

The center-of-mass momentum operator PCM conjugate to the center-of-mass
position operator QCM in (3.2.32) is

PCM = P1 + P2 . (3.2.34)

As can readily be checked using the three-dimensional generalization of the
Heisenberg commutation relations (1.2.11), namely,

[Qi, Pj ] = ih̄δij1, [Pi, Pj ] = 0, [Qi,Qj ] = 0, (3.2.35)

it is straightforward to show that Q in (3.2.31) and P in (3.2.33) satisfy [Qi, Pj ] =
ih̄δij1 and that QCM in (3.2.32) and PCM in (3.2.34) satisfy [QCMi , PCMj ] = ih̄δij1
as conjugate positions and momenta must.

2For example, when U(Q2 −Q1) = k[(Q2 −Q1)
2] = k[(Q2)

2 + (Q1)
2 + 2Q1Q2], the final term

prevents U from being written as the direct product U = U1 ⊗ 1+ 1⊗ U2.
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For two operators A1 = A1⊗1 and B2 = 1⊗B2 it always follows that [A1, B2] =
0 so that the position and momentum operators for mass point 1 commute with
the position and momentum operators for mass point 2. Also, P1 and Q1 obey the
Heisenberg commutation relations (3.2.35) as do P2 and Q2. From the definitions
(3.2.31)–(3.2.34), the following commutation relations can be immediately derived.
(Problem 3.1):

[

Qi, Pj

] = ih̄δij1
[

QCMi , PCMj

] = ih̄δij1
[

Pi, Pj

] = [

Qi,Qj

] = 0
[

PCMi , PCMj

] = [

QCMi ,QCMj

] = 0
[

Pi, PCMj

] = [

Pi,QCMj

] = 0
[

Qi, PCMj

] = [

Qi,QCMj

] = 0
(3.2.36)

Equations (3.2.36) reveal that the relative momentum and position operators P and
Q obey the Heisenberg commutation relations, that the center-of-mass momentum
and position operators PCM and QCM obey the Heisenberg commutation relations,
and that the relative momentum and position operators commute with the center-of-
mass momentum and position operators.

The Hamiltonian (3.2.24) can be rewritten in terms of the operators defined in
(3.2.31)–(3.2.34) and takes the form (Problem 3.2),

H = HCM +Hrelative , (3.2.37a)

where

HCM = P2
CM

2M
, M = m1 +m2 , (3.2.37b)

Hrelative = P2

2μ
+ U(Q) , (3.2.37c)

and the reduced mass μ is given by

μ = (m1m2)/(m1 +m2) . (3.2.37d)

Because PCM and QCM both commute with P and Q and because PCM and QCM
obey the Heisenberg commutation relations as do P and Q, the first term in (3.2.37a)
is the Hamiltonian of a non-interacting particle with mass M , and the second term
is the Hamiltonian of a particle with mass μ in an external potential U .

The space in which HCM, PCM and QCM act is the space spanned by the eigenkets
|pCM〉 of PCM that satisfy

PCM|pCM〉 = pCM|pCM〉 , (3.2.38)
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where PCM is defined in (3.2.34). This space is denoted HCM. Similarly, the space
in which Hrelative, P and Q act is the space spanned by |p〉 that satisfies

P|p〉 = p|p〉 , (3.2.39)

where P is defined in (3.2.33). This space is denoted Hrelative. The space H of
(3.2.25) can also be written as the direct product

H =HCM ⊗Hrelative . (3.2.40)

Instead of the basis system (3.2.27) or (3.2.29), the following basis system is used:

|pCM, p〉 ≡ |pCM〉 ⊗ |p〉 . (3.2.41)

When written in terms of the center-of-mass and relative operators, the Hamil-
tonian is the sum of HCM and Hrelative, which act, respectively, in the spaces HCM
and Hrelative. Writing the Hamiltonian in direct product notation,

H = HCM ⊗ 1+ 1⊗Hrelative = P2
CM

2M
⊗ 1+ 1⊗

[
P2

2μ
+ U(Q)

]

. (3.2.42)

By rewriting the Hamiltonian in terms of the center-of-mass momentum operator
PCM and relative momentum and position operators P and Q, the two-body
Hamiltonian (3.2.24) has been converted into a sum of two, independent, one-body
Hamiltonians that are much easier to analyze.

In both (3.2.25) and (3.2.42), the space of physical states H is written as a direct
product of two spaces. In the first case the spaces H1 and H2 are, respectively,
the space of states for the mass points m1 and m2. In the second case the spaces
HCM and and Hrelative are the space of states for the center-of-mass and relative
motion, respectively. While all four spaces H1, H2, HCM, and Hrelative are three
dimensional, they are very different spaces.

The basis vectors (3.2.38) are eigenvectors of HCM, but the eigenvectors (3.2.39),
which are eigenvectors of P, are not eigenvectors of Hrelative:

[Pi,Hrelative] �= 0 because [Pi,U(Q)] �= 0 i = 1, 2, 3 . (3.2.43)

Since a vector can be an eigenvector of two operators iff the two operators commute,
|p〉 cannot be an eigenvector of Hrelative. One of the standard problems of quantum
mechanics is to determine the eigenvalues of the Hamiltonian H , and rewriting
Hamiltonian as the direct product of two Hamiltonians, as is done in (3.2.40), is
the first step in solving the problem. Applying H to (3.2.41),

H |pCM, p〉 =
(

p2
CM

2M
|pCM〉

)

⊗ |p〉 + |pCM〉 ⊗Hrelative|p〉 , (3.2.44)
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where p2
CM/2M is the kinetic energy of the center of mass. Because of (3.2.43), |p〉

is not an eigenstate of Hrelative: when Hrelative acts on |p〉, it transforms |p〉 into a
continuous linear combination of momentum kets |p′〉 with all possible values for
p′i . Thus the use of the basis system |p〉 in the space Hrelative is not a practical way
to determine the eigenvalues of Hrelative. To obtain the eigenvalues E of Hrelative, a
basis system of eigenvectors of Hrelative are required.

Example 3.2.1 Determine the energy eigenvectors and eigenvalues of the Hamilto-
nian

H = P 2
1

2m1
+ P 2

2

2m2
+ 1

2
k(Q2 −Q1)

2

that describes two particles, each of which is moving in a one-dimensional space
and interacting via a harmonic oscillator potential with a spring constant k.

Solution Rewriting the Hamiltonian in terms of the relative position operator
(3.2.31), the relative momentum operator (3.2.33), and the center-of-mass momen-
tum operator (3.2.34), from (3.2.37) the Hamiltonian takes the form

H = P 2
CM

2M
+ P 2

2μ
+ 1

2
kQ2 = P 2

CM

2M
+Hoscillator = P 2

CM

2M
⊗ 1+ 1⊗Hoscillator .

A suitable basis system is |pCM〉⊗|En〉where the |En〉 are the eigenvectors (1.2.36)
of a harmonic oscillator with mass μ and spring constant k. The eigenvalues of H

are immediately calculated as follows:

H |pCM〉 ⊗ |En〉 =
(

P 2
CM

2M
|pCM〉

)

⊗ |En〉 + |pCM〉 ⊗
(

P 2

2μ
+ 1

2
kQ2

)

|En〉

=
(

p2
CM

2M
+ En

)

|pCM〉 ⊗ |En〉

The energy eigenvalues En are given in (1.2.40), En = h̄ω(n + 1/2) where ω =
(k/μ)1/2 and n = 0, 1, 2, . . . .

Eigenvectors of Hrelative, temporarily denoted |E · · · 〉, satisfy

Hrelative|E · · · 〉 = E|E · · · 〉 . (3.2.45)

In Example 3.2.1, because the Hamiltonian Hoscillator ≡ Hrelative acts in one spatial
dimension, the eigenvalue equation for the operator Hrelative completely determines
the energy eigenvectors |En〉 except for a phase factor, |En〉 → eiφ(En)|En〉,
and a normalization factor, |En〉 → constant |En〉. When Hrelative acts in more
spatial dimensions, the eigenvalue equation for the operator Hrelative does not fully
determine the vectors |E · · · 〉. In order to calculate the eigenvectors of Hrelative
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(up to phase and normalization factors), the |E · · · 〉 of (3.2.45) are also required
to be eigenvectors of a set of additional operators {Ak|k = 1, 2, . . .} satisfying
[Hrelative, Ak] = 0. The best choice for the set of operators {Ak} depends on the
specific problem.

As is often the case, the potential energy operator U(Q) commutes with the
angular momentum operator Li = εijkPjQk ,

[U(Q), Li] = 0 . (3.2.46)

Because [P 2, Li ] = 0, it then follows that

[Hrelative, Li ] = 0 . (3.2.47)

From the above equation and (2.3.6), respectively, L2 and L3 commute with Hrelative
and with each other so a suitable choice for the additional operators {Ak} is {L2, L3},
where L3 is the component of L in any desired direction.

A set of commuting, selfadjoint operators whose eigenvalues completely label
the basis vectors is called a complete set of commuting operators or a complete
set of commuting observables. When studying a quantum physical system, the two
most important questions are as follows: (1) What is a complete set of commuting
operators for the system? (2) What are the algebraic relations among the various
operators?

For a quantum physical system with a classical analogue, the number of operators
in a complete set of commuting observables equals the number of degrees of
freedom in the corresponding classical system. In Example 3.2.1 on the previous
page, each particle moves in one spatial dimension, so there are two degrees of
freedom. Thus the two operators, P 2

CM/2M and Hoscillator constitute a complete set
of commuting operators. For the quantum mechanical Kepler problem describing a
spinless electron in a Coulomb field, the electron moves in three spatial dimensions,
so there are three degrees of freedom. The operators Hrelative, L2, and L3 form a
complete set of commuting operators. Taking electron spin into consideration, as
will be discussed later, the spin-angular momentum has to be added to the orbital
angular momentum to form total angular momentum operators. The additional
spin degree of freedom requires that the complete set of commuting operators be
enlarged.

To determine the eigenvalues of Hrelative for the quantum mechanical Kepler
problem, it is convenient to choose the eigenvectors |E · · · 〉 = |E, �,m〉 as the
basis vectors for the space Hrelative that fulfill the eigenvalue equations

[
P2

2μ
+ U(Q)

]

|E, �,m〉 = E|E, �,m〉 , (3.2.48a)

L2|E, �,m〉 = h̄2�(�+ 1)|E, �,m〉 , (3.2.48b)

L3|E, �,m〉 = h̄m|E, �,m〉 . (3.2.48c)
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From the discussion of angular momentum, in particular from (2.3.33) and (2.3.34),
� can take integer values, � = 0, 1, 2, · · ·, and m = −�,−� + 1, . . . , �. In general
the eigenvalues E, � and m are all interrelated just as � and m are. The possible
eigenvalues of E in (3.2.48a) obviously depend on Hrelative and also depend on the
boundary conditions.

Boundary conditions are a requirement on the set of acceptable solutions.
For example, only those |E, �,m〉 for which the values of E are a discrete set
{En|n = 0, 1, 2, · · ·} might be deemed acceptable. A standard method for solving
the eigenvalue equation (3.2.48a) is to take the “scalar product” of |E, �,m〉 with
the eigenkets |x〉 of the operator Q of (3.2.31), Q|x〉 = x|x〉:

〈x|
(

PiPi

2μ
+ U(Q)

)

|E, �,m〉 = E〈x|E, �,m〉 . (3.2.49)

Equation (3.2.49) is then converted into a differential equation that can be solved by
expanding |E, �,m〉 in terms of momentum eigenstates |p〉, just as ψ was expanded
in terms such states in (3.2.21):

〈x|Pi |E, �,m〉 =
∫ ∞

−∞
d3p〈x|Pi |p〉〈p|E, �,m〉 =

∫ ∞

−∞
d3p pi〈x|p〉〈p|E, �,m〉 .

(3.2.50)

Using (3.2.19) the above equation can be rewritten in the form

〈x|Pi |E, �,m〉 = (2πh̄)−
3
2

∫ ∞

−∞
d3p pie

ip·x/h̄〈p|E, �,m〉 . (3.2.51)

Since

h̄

i

∂

∂xi

eip·x/h̄ = h̄

i

ipi

h̄
eip·x/h̄ = pie

ip·x/h̄ ,

(3.2.51) becomes

〈x|Pi |E, �,m〉 = (2πh̄)−
3
2

∫ ∞

−∞
d3p

h̄

i

∂

∂xi

eip·x/h̄〈p|E, �,m〉

= h̄

i

∂

∂xi

∫ ∞

−∞
d3p〈x|p〉〈p|E, �,m〉 = h̄

i

∂

∂xi

〈x|E, �,m〉 . (3.2.52)

Using the same logic that led to (3.2.52), it immediately follows that for any
integer n,

〈x|(Pi)
n|E, �,m〉 =

(
h̄

i

∂

∂xi

)n

〈x|E, �,m〉 . (3.2.53)
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With the aid of (3.2.53), the energy eigenvalue equation (3.2.49) becomes

[

1

2μ

(
h̄

i

∂

∂xi

)2

+ U(x)

]

〈x|E, �,m〉 = E〈x|E, �,m〉 . (3.2.54)

The Schrödinger wave functions ψn,�,m(x) = 〈x|En, �,m〉 are required to obey
specific boundary conditions just as are solutions to any differential equation.
For example, the solutions could be required to be Lebesgue square integrable
functions—or Hilbert space functions—of the variables x. In most physical applica-
tions, solutions are at least chosen to be smooth, rapidly decreasing functions. With
such boundary conditions (3.2.54) often has solutions for a discrete set of values
of E that are negative, E1, E2, E3, . . . and a continuous set of values E that are
non-negative, 0 ≤ E < ∞.

The set of all possible energy eigenvalues of (3.2.54) is called the energy
spectrum or the spectrum of the energy operator H . Note that this set is determined
both by the differential operator in (3.2.54) and by the boundary conditions. A
typical example of this spectrum is the spectrum of the hydrogen atom or the
quantum mechanical Kepler problem.

Example 3.2.2 Determine the lowest energy eigenvalue and corresponding
Schrödinger wave function for a hydrogen atom in a two-dimensional space
described by the Hamiltonian

H = P 2
x + P 2

y

2μ
− e2

4πε0

√

Q2
x +Q2

y

.

The hydrogen atom has a reduced mass μ, the magnitude of the electron and proton
charges are e, and the interaction results from a Coulomb potential in two spatial
dimensions.

Solution Since the Hamiltonian is spherically symmetric (Problems 3.3 and 3.4),

[H,L3] = 0 ,

it is possible to choose eigenvectors |E,m〉 where E and m are, respectively, the
eigenvalues of H and L3. Using the same procedure that led to (3.2.54), the Schrö-
dinger equation in two dimensions is

[

− h̄2

2μ

(
∂2

∂x2 +
∂2

∂y2

)

− e2

4πε0
√

x2 + y2
)

]

〈x, y|E,m〉 = E〈x, y|E,m〉 ,
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and the eigenvalue equation L3|E,m〉 = h̄m|E,m〉 similarly becomes

(

x
h̄

i

∂

∂y
− y

h̄

i

∂

∂x

)

〈x, y|E,m〉 = mh̄〈x, y|E,m〉 .

Rewriting the above two equations in terms of polar coordinates, x = r cos φ and
y = r sin φ (Problems 3.7 and 3.8),

{

− h̄2

2μ

[
∂2

∂r2 +
1

r

∂

∂r
+ 1

r2

∂2

∂φ2

]

− e2

4πε0 r

}

〈r, φ|E,m〉 = E〈r, φ|E,m〉 ,

h̄

i

∂

∂φ
〈r, φ|E,m〉 = h̄m〈r, φ|E,m〉 .

The second of the above two equations is the analog of (3.2.48c) and makes it

possible to calculate ∂2

∂φ2 〈r, φ|E,m〉 in the energy eigenvalue equation. Writing
〈r, φ|E,m〉 = R(r)Φ(φ), the solution to the second equation is

Φ(φ) = eimφ ,

and the energy eigenvalue equation becomes

{

− h̄2

2μ

[
∂2

∂r2 +
1

r

∂

∂r
− m2

r2

]

− e2

4πε0 r

}

R(r) = ER(r) .

One boundary condition requires that the solution be invariant under rotations of
2π , Φ(φ + 2π) = Φ(φ), implying that m is an integer.

Since the term in the energy eigenvalue equation proportional to m2 that
multiplies R(r) is positive, the term increases the energy. The smallest energy thus
occurs when m is zero. The solution corresponding to this energy is of the form
R(r) = e−r/a0, where a0 is a positive constant. Note that the solution is square-
integrable. Using this trial solution, the eigenvalue equation for the energy becomes

(

− h̄2

2μ a2
0

− E

)

+ 1

r

(

h̄2

2μa0
− e2

4πε0

)

= 0 .

The above equation must be satisfied for all values of r , so the two terms in
parentheses must vanish independently. Consequently,

a0 = 2πε0h̄
2

μe2 , E = − 2μe4

(4πε0h̄)2 .

The (unnormalized) solution is

〈r, φ|E,m〉 = R(r)Φ(φ) = e−r/a0 eimφ .
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Example 3.2.3 Determine the form of the Schrödinger equation (3.2.54) for the
spherically invariant potential U(r) (r = √

x2 + y2 + z2) in the three-dimensional
space, using spherical coordinates: (x, y, z) = (r sin θ cos φ, r sin θ sin φ, r cos θ).
Express the final result in terms of the operator L2 (or its eigenvalues) and
derivatives with with respect to a variable r .

Solution Taking the square of the angular momentum operator L = Q × P we
obtain with the help antisymmetric symbol (2.2.4)

L2 = (Q× P)2 = εijkQjPkεilmQlPm = (δjmδkn − δjnδkm)QjPkQlPm

= QjPkQjPk −QjPkQkPj = Qj(QjPk − ih̄δjk)Pk −QjPk(PjQk + ih̄δjk)

= QjQjPkPk − 2ih̄QjPj − (QjPjQkPk − 3ih̄) = Q2P2+ ih̄Q ·P− (Q ·P)2.

Now let us calculate Q · P and (Q · P)2

∂

∂r
= x

r

∂

∂x
+ y

r

∂

∂y
+ z

r

∂

∂z
⇒ Q ·P = r

h̄

i

∂

∂r
and (Q ·P)2 = −h̄2r2 ∂2

∂r2 − h̄2r
∂

∂r
,

so we obtain

P2 = 1

r2 ((Q · P)2 − ih̄(Q · P)+ L2)

and the Schrödinger equation (3.2.54) in the spherical coordinates takes the form

(

− h̄2

2μ

( ∂2

∂r2 +
2

r

∂

∂r
− �(�+ 1)

r2

)+ U(r)

)

〈r, θ, φ|n, �,m〉 = E〈r, θ, φ|n, �,m〉
(3.2.55)

In three-dimensional space solutions of the Schrödinger equation (3.2.55) are
of the form 〈r, θ, φ|n, �,m〉 ≡ Rn,�(r)Y

m
� (θ, φ). For the hydrogen atom the first

few radial functions Rn,�(r) and spherical harmonics Ym
� (θ, φ) are tabulated below

(rB = 4πε0h̄
2/μe2 is the Bohr radius and L2l+1

n−�−1(ρ) is a generalized Laguerre
polynomial of degree n− �− 1) (Tables 3.1 and 3.2):

The solutions have been normalized so that the probability of finding the electron
somewhere is unity. The formula for all energy levels for a hydrogen atom are
similarly found to be

En = − e2

8πε0rB

1

n2 = −
μe4

2(4πε0h̄)2

1

n2 = −
13.6 eV

n2 , and −∞ < En < 0 .

(3.2.56)
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Table 3.1 Normalized,
radial wave functions for the
hydrogen atom

n � Rn,�(r)

1 0
2

(rB)3/2
e−r/rB

2 0
1

(2rB )3/2

(

2− r

rB

)

e−r/2rB

2 1
1√

3(2rB )3/2

r

rB
e−r/2rB

3 0
2

3(3rB )3/2

[

3− 2
r

rB
+ 2

9

(
r

rB

)2
]

e−r/3rB

3 1
4
√

2

9(3rB )3/2

r

rB

(

1− 1

6

r

rB

)

e−r/3rB

3 2
2
√

2

27
√

5(3rB)3/2

(
r

rB

)2

e−r/3rB

. . .

n �

(
2

nrB

)3/2 √
(n − l − 1)!
2n(n + l)! e−r/(nrB )L2�+1

n−�−1(
2r

nrB
)

Table 3.2 Spherical
harmonics

� m Ym
� (θ, φ)

0 0 1
2
√

π

1 0 1
2

√

3
π

cos θ

1 ±1 ∓ 1
2

√
3

2π
sin θ e±iφ

Because the calculation in Example 3.2.2 was performed in two spatial dimensions
instead of three, there the solution for E differs from the expression for the ground-
state energy (3.2.56) of the hydrogen atom by a factor of 4. The energy values En

for the hydrogen atom are plotted in Fig. 3.1 on the following page.
Although more complicated, the situation is similar for other atoms and for the

electronic spectra of molecules. The ideal harmonic oscillator, for which Hrelative =
P2/(2μ) + (k/2)Q2, has only a discrete spectrum En = h̄ω(n + 1/2). But as
discussed in Chaps. 1 and 2, for realistic oscillators such as vibrating diatomic
molecules, the harmonic oscillator potential U(x) = kx2/2 is only an approximation
that is good for low energies.

In general, as is the case for the Alkali atoms, the discrete eigenvalues of H

depend on the angular momentum quantum number �, E = En,�, and the possible
values of � depend on the value of n. For a given n, the orbital angular momentum
can take the values � = 0, 1, . . . , n − 1 and the energy values for a given n are
En,�=0, En,�=1, . . . , En,�=n−1. In contrast, for the Coulomb potential the discrete
energy eigenvalues as given in (3.2.56) are independent of �. But when the effects
of the spin of the electron are included, the energy levels split into sublevels
that depend on �. When a Hamiltonian Hrelative satisfies (3.2.47), it is said to be
rotationally invariant or possess rotational symmetry, and the energy values will not
depend on the quantum number m.
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Fig. 3.1 The energy
spectrum of the Hamiltonian
Hrelative for the hydrogen
atom as given in (3.2.56)
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The eigenvectors |E, �,m〉 of (3.2.48) form a basis system for the space of states
of the relative motion. This means that every state vector φ ∈ Hrelative can be
written as

φ =
∑

n,�,m

|En�, �,m〉〈En� , �,m|φ〉 +
∫ ∞

0
dE

∑

�,m

|E, �,m〉〈E, �,m|φ〉 ,

(3.2.57)

where the sum over � extends over � = 0, 1, 2, . . . , the sum over m extends over
m = −�,−�+ 1, . . . , �. Thus the sum over E extends over all discrete values En,�.
Similarly, the integral over E extends over all values E in the continuous range
0 ≤ E < ∞.

Example 3.2.4 Determine the energy eigenvectors and eigenvalues for the Hamil-
tonian

H = P 2
1

2m
+ P 2

2

2m
+ 1

2
kQ2

1 +
1

2
kQ2

2 +
1

2
k1 (Q2 −Q1)

2 ,
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that describes two particles, each moving in one-dimensional space. Here the
particles, which could, for example, have different charges, are not assumed to be
identical.

Solution Since the potential does not depend solely on the relative coordinate
Q2−Q1 earlier results of this section cannot be used. The Hamiltonian is separated
by introducing new position operators Qα and Qβ that are linear combinations of
the original position operators,

Qα ≡ α (Q2 −Q1) , Qβ ≡ β (Q2 +Q1) ,

where α and β are constants. An easy method for finding the conjugate momentum
operators Pα and Pβ is to use the position representation and the chain rule for
differentiation. In the position representation,

xα = α(x2 − x1) , xβ = β(x2 + x1) ,

and the conjugate momentum operators are

Pα = −ih̄
∂

∂xα

, Pβ = −ih̄
∂

∂xβ

.

Using the chain rule for differentiation,

−ih̄
∂

∂x1
= −ih̄

∂xα

∂x1

∂

∂xα

− ih̄
∂xβ

∂x1

∂

∂xβ

= −α

(

−ih̄
∂

∂xα

)

+ β

(

−ih̄
∂

∂xβ

)

.

The above equation implies

P1 = −αPα + βPβ .

A similar calculation yields

P2 = αPα + βPβ .

Rewriting H in terms of Qα , Qβ , Pα , and Pβ ,

H = 2α2

2m
P 2

α +
2β2

2m
P 2

β +
1

2

(
k

2α2 +
k1

α2

)

Q2
α +

1

2

k

2β2 Q2
β .

Choosing α2 = β2 = 1
2 , the Hamiltonian can be written in the form

H = Hα +Hβ
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where

Hα = P 2
α

2m
+ 1

2
(k + 2k1)Q

2
α and Hβ =

P 2
β

2m
+ 1

2
kQ2

β .

Since the Hamiltonian is the sum of two independent harmonic oscillator Hamil-
tonians, each in a one-dimensional space, the energy eigenvectors are |Eα

i 〉 ⊗ |Eβ
j 〉.

The |Eα
n 〉 are the eigenvectors (1.2.36) of a harmonic oscillator with mass m and

spring constant k+2k1 and the |Eβ
j 〉 are eigenvectors for a harmonic oscillator with

mass m and spring constant k. The energy eigenvalues are calculated as follows:

H |Eα
i 〉 ⊗ |Eβ

j 〉 =
[

P 2
α

2m
+ 1

2
(k + 2k1)Q

2
α

]

|Eα
i 〉 ⊗ |Eβ

j 〉

+|Eα
i 〉⊗

[

P 2
β

2m
+ 1

2
kQ2

β

]

|Eβ
j 〉 =

[

h̄ωα

(

i + 1

2

)

+ h̄ωβ

(

j + 1

2

)]

|Eα
i 〉⊗|Eβ

j 〉 .

In the above formula ωα = [(k + 2k1)/m]1/2, ωβ = (k/m)1/2, and i, j =
0, 1, 2, 3, . . . .

For classical systems the decomposition of a physical system into constituents is
understood to be totally different from the decomposition of the motions (degrees
of freedom). In quantum mechanics these decompositions are very similar. For the
decomposition into constituents (particles), H is the direct product of constituent
spaces H1 and H2 as given in (3.2.25). For the decomposition into center-of-mass
motion and relative motion, H is the direct product of HCM and Hrelative as given
in (3.2.37a).

3.3 Combination of Quantum Physical Systems

3.3.1 Mathematical Preliminaries

The general prescription for the combination of two or more quantum physical sys-
tems can be conjectured from the results of the previous section. The mathematical
tool needed to give a general description of two quantum physical systems is the new
mathematical concept of the direct product or tensor product of two linear spaces.
The idea of direct-product spaces is introduced by considering two vectors (also
called rank one tensors) a and b in the usual three-dimensional space �3:

a =
3
∑

i=1

aiei , and b =
3
∑

i=1

biei , (3.3.1)
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where the ei are a set of three orthonormal vectors. Writing the two vectors next to
each other, a rank-two tensor T ≡ ab is obtained:

ab =
3
∑

i=1

aiei

3
∑

j=1

bj ej =
3
∑

i=1

3
∑

j=1

aibj eiej , (3.3.2)

To stress the fact that the vectors are just written next to each other, mathematicians
write ab ≡ a⊗ b and eiej ≡ ei ⊗ ej . Then, in this new notation (3.3.2) becomes

a⊗ b =
3
∑

i=1

3
∑

j=1

aibj ei ⊗ ej , (3.3.3)

and ei ⊗ ej is called the direct product of the vectors ei and ej . The new space
obtained from the direct product is denoted�3⊗�3 and is spanned by ei⊗ej , which
is a (real) linear space. The following example establishes that �3 ⊗ �3 possesses
the property (A.2.1b), which is one of the properties required of a (real) linear space.

Example 3.3.1 Let T and T̃ be two tensors in the space �3 ⊗�3,

T =
3∑

i=1

3∑

j=1

Tij ei ⊗ ej , T̃ =
3∑

i=1

3∑

j=1

T̃ij ei ⊗ ej .

Show that addition is associative. That is, show that T + T̃ = T̃ + T .

Solution

T + T̃ =
3
∑

i=1

3
∑

j=1

Tij ei ⊗ ej +
3
∑

i=1

3
∑

j=1

T̃ij e⊗ ej

=
3
∑

i=1

3
∑

j=1

T̃ij ei⊗ej+
3
∑

i=1

3
∑

j=1

Tij ei⊗ej =
3
∑

i=1

3
∑

j=1

(T̃ij +Tij ) ei⊗ej = T̃ +T

In a similar manner, it is possible to show that the remaining defining relations
(A.2.2b)–(A.2.10b) for a (real) linear space are satisfied. Because the components
of vectors in three-dimensional space are real, the constants “a” and “b” that appear
in (A.2.1b)–(A.2.9b) must be real. Thus the space being discussed here is a real
linear space, not a general linear space.

Instead of taking the direct product of �3 with itself, the direct product can be
taken of two different, finite-dimensional, linear, scalar-product spaces ΦM and ΨN .
The M-dimensional space ΦM is spanned by φμ, μ = 1, 2, . . . ,M , and the N-
dimensional space ΨN is spanned by ψν , ν = 1, 2, ..., N . An element T in the
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direct-product space ΦM ⊗ ΨN is written in the form

T =
M
∑

μ=1

N
∑

ν=1

Tμν φμ ⊗ ψν . (3.3.4)

Since φμ is a basis in ΦM and ψν is a basis in ΨN , φμ ⊗ ψν is a basis in the space
ΦM ⊗ ΨN with dimension M ·N .

A scalar product can be defined on the direct-product space ΦM ⊗ ΨN . If
(φμ, φμ′)Φ denotes the scalar product in ΦM and (ψν,ψν ′)Ψ denotes the scalar
product in ΨN , the scalar product of two tensors T and T̃ in the space ΦM ⊗ ΨN is
defined by

(T , T̃ ) =
⎛

⎝

M
∑

μ=1

N
∑

ν=1

Tμνφμ ⊗ ψν ,

M
∑

μ′=1

N
∑

ν ′=1

T̃μ′ν ′ φμ′ ⊗ ψν ′

⎞

⎠

=
M
∑

μ=1

N
∑

ν=1

M
∑

μ′=1

N
∑

ν ′=1

T ∗μν T̃μ′ν ′(φμ, φμ′)Φ(ψν,ψν ′)Ψ . (3.3.5)

It is straightforward to show that the scalar product defined in the above equation
satisfies all the properties (A.2.13c)–(A.2.16c) required of a scalar product in a
linear, scalar-product space (Problem 3.10).

Example 3.3.2 Verify that (3.3.5) satisfies (A.2.13c). That is, verify that

(T , T ) ≥ 0 .

Solution Making the replacement T̃ → T in (3.3.5) ,

(T , T ) =
M
∑

μ=1

N
∑

ν=1

M
∑

μ′=1

N
∑

ν ′=1

T ∗μν Tμ′ν ′(φμ, φμ′)Φ(ψν,ψν ′)Ψ .

Without loss of generality, the basis vectors can be chosen to be orthonormal.
Making this choice,

(T , T ) =
M
∑

μ=1

N
∑

ν=1

M
∑

μ′=1

N
∑

ν ′=1

T ∗μν Tμ′ν ′ δμ,μ′ δν,ν ′ =
M
∑

μ=1

N
∑

ν=1

T ∗μν Tμν ≥ 0 .

If AΦ is a linear operator on the space ΦM and BΨ is a linear operator on the
space ΨN , the corresponding linear operators in ΦM ⊗ ΨN are defined to be

A ≡ AΦ ⊗ 1 , B ≡ 1⊗ BΨ . (3.3.6)
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The action of A and B on the tensor T are defined to be

AT = (AΦ ⊗ 1)

M
∑

μ=1

N
∑

ν=1

Tμν φμ ⊗ ψν ≡
M
∑

μ=1

N
∑

ν=1

Tμν(AΦφμ)⊗ ψν ,

BT ≡
M
∑

μ=1

N
∑

ν=1

Tμν φμ ⊗ (BΨ ψν) .

(3.3.7)

The action of the operator C ≡ AΦ ⊗ BΨ on T is defined by

CT = (AΦ ⊗ BΨ )

M
∑

μ=1

N
∑

ν=1

Tμν φμ ⊗ ψν ≡
M
∑

μ=1

N
∑

ν=1

Tμν(AΦφμ)⊗ (BΨ ψν) .

(3.3.8)

It is not difficult to show that the operator C defined above is a linear operator in
the direct-product space ΦM ⊗ΨN . That is, the operator C possesses the properties
(A.3.1b)–(A.3.5b) required of linear operators (Problem 3.11).

Example 3.3.3 Let T and T̃ be tensors in ΦM ⊗ΨN and let the action of C on T be
defined by (3.3.8). Show that C(T + T̃ ) = CT + CT̃ .

Solution

C(T + T̃ ) = (AΦ ⊗ BΨ )

M
∑

μ=1

N
∑

ν=1

(Tμν + T̃μν)φμ ⊗ ψν

=
M
∑

μ=1

N
∑

ν=1

(Tμν + T̃μν)(AΦφμ)⊗ (BΨ ψν)

=
M
∑

μ=1

N
∑

ν=1

Tμν(AΦφμ)⊗(BΨ ψν)+
M
∑

μ=1

N
∑

ν=1

T̃μν(AΦφμ)⊗(BΨ ψν) = CT+CT̃ .

If AΦ and A′Φ are linear operators on the space ΦM while BΨ and B ′Ψ are linear
operators in the space ΨN , then (Problem 3.12)

AΦA′Φ ⊗ BΨ B ′Ψ = (AΦ ⊗ BΨ )(A′Φ ⊗ B ′Ψ ) . (3.3.9)

In the direct-product space every linear operator C is a linear combination of direct
products of operators,

C =
∑

aiA
i
Φ ⊗ Bi

Ψ , ai ∈ C . (3.3.10)

The direct product of infinite-dimensional, linear, scalar-product spaces is a gener-
alization of the finite-dimensional case obtained by taking the limit M,N →∞.
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3.3.2 Basic Postulate for the Combination of Quantum Systems

The mathematical properties of direct-product spaces have been set forth for M×N

dimensional spaces. To describe the combination of two quantum physical systems,
direct-product spaces will be generalized to infinite (and even continuously-infinite)
dimensions.

For the case of two interacting mass points considered in the previous section, let
H1 = Φ be the space spanned by the (generalized) momentum basis vectors |p1〉
and let H2 = Ψ be the space spanned by the (generalized) momentum basis vectors
|p2〉, where the (generalized) vectors |p1〉 and |p2〉 describe the first and second
mass points, respectively. The space of physical states H is the direct product of
H1 and H2, H =H1 ⊗H2, spanned by the basis system

|p1, p2〉 ≡ |p1〉 ⊗ |p2〉 , (3.3.11)

and is the space of physical states of the two, mass-point system. Operators for
the combined system are operators in the direct-product space H . The momentum
operators for mass points 1 and 2 are, respectively, P1 ⊗ 1 and 1⊗ P2.

As discussed in Sect. 3.2, (3.3.11) is not the only basis system for the space
H =H1⊗H2. Another basis system is given by the vectors |x1, x2〉 ≡ |x1〉⊗|x2〉.
In order to perform calculations, in Sect. 3.2.3 it was shown to be advantageous
to consider the two-particle system in terms of the center-of-mass motion and the
relative motion about the center of mass. That is, the combined motion is described
by the direct product of the center-of-mass motion described by HCM and the
relative motion described by Hrelative. Thus The basis system of H adapted to the
combination of HCM and Hrelative is

|pCM, p〉 = |pCM〉 ⊗ |p〉 , (3.3.12)

where |pCM〉 is a basis of HCM and |p〉 is a basis of Hrelative. The basic postulate
for combining quantum physical systems is an immediate generalization of the case
just discussed:

3.3.3 Combination of Quantum Systems: Direct-Product
Spaces—Fundamental Postulate IV

Let one physical system be described by an algebra of operators {AΦ} in the
space Φ, and a second physical system be described by an algebra of operators
{BΨ } in the space Ψ . The direct-product space Φ⊗Ψ is the space of physical states
of the combination of the two systems. The observables for the combined system
are operators in the direct-product space and are of the form (3.3.10). Observables
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in the first system alone are given by AΦ ⊗ 1, and observables in the second system
alone are given by 1⊗ BΨ , where 1 is the identity operator.

3.3.4 Complete Sets of Commuting Observables

A set of commuting, hermitian operators with eigenvalues that completely specify
a (generalized) basis for a system is, following Dirac, called a complete set of
commuting operators or a complete set of commuting observables (c.s.c.o.) for the
system.

The eigenvalues of a c.s.c.o. are called quantum numbers that can take a discrete
set of values, a continuous set of values, or both. For example, for the two point-
particles of Sect. 3.2, the c.s.c.o. are the six momentum operators, either of the
individual particles OR of the center-of-mass and the relative motion:

P1i , P2i or PCMi
, Pi , where i = 1, 2, 3 . (3.3.13)

Their respective eigenvectors are

|p1 , p2〉 or |pCM , p〉 . (3.3.14)

Alternatively, instead of the six momentum operators, the six position operators
could be chosen

Q1i , Q2i or QCMi , Qi , (3.3.15)

with respective eigenvectors

|x1, x2〉 or |xCM, x〉 . (3.3.16)

As already stated in (3.2.28a) and (3.2.28b), each vector φ in the direct-product
space φ ⊆ H = H1 ⊗ H2 = HCM ⊗ Hrelative can be expanded in terms of
|p1, p2〉 or |x1, x2〉. Expansion in terms of direct-product basis functions follows
immediately from (3.2.21). Each basis vector |x1, x2〉 can be expanded with respect
to the system of basis vectors |p1, p2〉 as in (3.2.29). Conversely, each basis vector
|p1, p2〉 can be expanded with respect to the system of basis vectors |x1, x2〉,

|p1, p2〉 =
∫∫

d3x1 d3x2|x1, x2〉〈x1, x2|p1, p2〉 , (3.3.17)

where the transition coefficients between these two basis systems are given by

〈x1, x2|p1, p2〉 = (2πh̄)−3/2ei(x1·p1)/h̄(2πh̄)−3/2ei(x2·p2)/h̄ . (3.3.18)
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The above transition coefficients are the complex conjugates of those in (3.2.29),
〈x1, x2|p1, p2〉 = 〈p1, p2|x1, x2〉∗. Similarly, the basis vectors for center-of-mass
and relative position satisfy

〈xCM, x|pCM, p〉 = (2πh̄)−3/2eixCM·pCM/h̄(2πh̄)−3/2eix·p/h̄ . (3.3.19)

The general state vector φ can be expanded in terms of any one of the four sets
of basis vectors (3.3.14) and (3.3.16). For example, choosing the center-of-mass
position basis |xCM, x〉,

φ =
∫∫

d3xCM d3x |xCM, x〉〈xCM, x|φ〉 . (3.3.20a)

Similarly, choosing the center of mass momentum basis system |pCM, p〉,

φ =
∫∫

d3pCM d3p |pCM, p〉〈pCM, p|φ〉 . (3.3.20b)

Thus for quantum systems consisting of two point particles that may or may not
interact, four different sets of continuous quantum numbers have already been
found: {p1, p2}, {x1, x2}, {pCM, p} and {xCM, x}. The set of possible values that
each quantum number can take is called the spectrum of the quantum number.
Consequently, the spectrum of the operator P1i is the continuous spectrum −∞ ≤
p1i ≤ +∞ with the spectra of the other operators described similarly. Each of
the four sets consists of six quantum numbers regardless of which set of operators
(3.3.13) or (3.3.15) is chosen. Since six numbers are required to characterize two
classical mass points, from the correspondence principle it follows that six operators
constitute a c.s.c.o. for the two quantum mass points. In general, the number of
operators in the c.s.c.o. equals the number of degrees of freedom in the classical
system.

For the one-dimensional oscillator of Chap. 1, Sect. 1.2, the energy quantum
number n with the spectrum n = 0, 1, 2, 3 . . . was used to label the basis system.
The basis vectors labeled by this quantum number are the energy eigenvectors
|En〉 = |n〉, and the c.s.c.o. consists of the single operator N or, equivalently, the
energy operator H = h̄ω(N+1/2). Instead of the eigenvectors |n〉, the eigenvectors
|x〉 of the position operator satisfying Q|x〉 = x|x〉 with the continuous spectrum
−∞ ≤ x ≤ +∞ could have been used. Equivalently, the momentum basis vectors
|p〉 could have been used.

3.3.5 The Rotating Dumbbell

For the rigid rotator discussed in Chap. 2, Sect. 2.2 the two operators J2 and J3
constitute a c.s.c.o. The eigenvectors of the rotator are |j, j3〉. To complete the set
of operators describing the rigid rotator, the operators J1 and J2 must be adjoined
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to the operators J2 and J3, where J2 = J 2
1 + J 2

2 + J 2
3 . The operators Ji obey the

algebra of angular momentum.
As discussed in Chap. 2, Sect. 2.4, in the description of the rigid, rotating

dumbbell, which is a combination of two structureless mass points connected by
a rigid, massless rod of length r , the angular momentum operators Ji were used,
but were insufficient. Additionally, the vector operators Qi were introduced that are
the components “pointing” along the intranuclear axis and satisfying the condition
Q2 = QiQi = r2, which is a constant for a rigid, rotating dumbbell. In addition to
the intrinsic or relative position operator Q of the two mass points given by (3.2.31),
there is the center-of-mass position operator QCM given by (3.2.32) that was ignored
in Chap. 2, Sect. 2.4.

If the dumbbell possesses only orbital angular momentum of the two mass points
relative to the center of mass, then Ji = Li = εijkQjPk . Since Qi and Qj

commute, Ji · Qi = εijkQiQjPk = 0. For a general, axially symmetric rotator,
corresponding to a dumbbell with spinning mass points, there is also intrinsic
angular momentum (spin) k0 around the dumbbell axis. Then Ji ·Qi = ±k0r , where
k0 = 0, 1/2, 1, 3/2 . . . and the plus (minus) sign is chosen if the spin is parallel
(antiparallel) to r. The c.s.c.o. consists of the set {J3, J2 = JiJi, Ji · Qi,QiQi},
and in the center-of mass frame the basis vectors |j3, j, k0, r〉 are labeled by four
quantum numbers.

At low energies on the order of 10−3 eV, the dumbbell axis is rigid, implying that
r = constant. But at higher energies, which could occur in collisions with electrons
that have energies on the order of 10−1 eV, the dumbbell axis starts vibrating. Then
Q2 = QiQi = r2 is no longer constant. In addition to J2 and J3, Q = √

Q2

becomes an operator. The rigid dumbbell molecule has become a vibrating-rotating
or a rotating-vibrating molecule. For the simplest case where the angular momentum
k0 = 0 around the intranuclear axis, the dumbbell molecule rotates about its center
of mass and performs harmonic oscillations along the intranuclear axis.

Whether or not the rotations of the vibrating molecule are observed depends on
the resolution of the spectrometer used to detect the emitted or absorbed spectral
lines. For coarse resolution corresponding to energies > 10−2 eV, only one broad
spectral line is observed with peaks at the following frequency:

Frequency : ν = ΔE

2πh̄
= 6.42× 1013 s−1 where ΔE = |En − En±1| = 0.265 eV

(3.3.21a)

Expressing the frequency as a wave number by dividing by c.3

Wave number : ν = ΔE

2πh̄ c
= 2140 cm−1 (3.3.21b)

3In molecular physics wave number is expressed in cm−1 and is denoted by ν, a convention
followed here.
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Fig. 3.2 Vibration-rotation band of carbon monoxide

At this resolution the CO molecule appears as an oscillator: as discussed in the
energy loss experiment of Chap. 1, Sect. 1.4, the quantum number n is sufficient to
describe the infrared spectrum of diatomic molecules. The c.s.c.o. consists of the
single operator N or Hoscillator, and the basis vectors are labeled by the quantum
number |n〉 = |En〉.

When a spectrometer of sufficiently high resolution is used, as shown in Fig. 3.2,
the broad spectral line for the CO molecule around ν = 2140 cm−1 is resolved
into many almost-equidistant, closely-spaced peaks, with one peak missing in the
center of the band. Going out from the gap, there are two branches, the P branch
toward longer wavelengths (smaller frequencies) and the R branch toward smaller
wavelengths.

This splitting of the broad peak into many narrow peaks cannot be explained by
the oscillator model, implying that a state characterized by the quantum number n

is not a pure state. Instead it is a mixture of states with different energies. In the
oscillator, however, the state characterized by n was a pure state described by a
projection operator Λn = |n〉〈n| on a one-dimensional subspace spanned by |n〉,
namely ΛnH . From the fine structure in the spectral line of Fig. 3.2, it follows that
the state of the diatomic molecule characterized by the vibrating quantum number
n has split into sublevels. Consequently the oscillator model alone describes only
part of the properties of the diatomic molecule. To describe the finer details of the
spectrum, the oscillator model must be combined with the rotator model with the
result that the c.s.c.o. consists of the set of three operators

{Hoscillator,Hrotator, J3} or {N, J2, J3} . (3.3.22)

Had the initial resolution been with high precision at lower energies, the spectral
lines of the rotator in the far infrared (10−3 eV) of Fig. 3.2 would have been detected
first. The c.s.c.o. for the rotator consists of the two operators J2 and J3. Increasing
the energy to 10−1 eV, the vibrational degrees of the spectra can be observed because
the distance r between the mass points is no longer constant but, instead, is given by
the operator

√

Q2 with the eigenvectors |x〉. For the harmonic oscillator, instead of
using the eigenvectors |x〉, it is possible to use the eigenvectors |n〉 of the operator
Hoscillator = h̄ω(N + 1

2 1) and the c.s.c.o. is again given by (3.3.22).
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As stated in Fundamental Postulate I, a quantum-physical system is described
by an operator-algebra of observables although for particular physical questions,
physicists often only work with subalgebras. From the experimental data a physicist
determines how many quantum numbers are required and the possible values
of these quantum numbers. According to the Fundamental Postulate III, this
information allows the determination of the c.s.c.o. {Ak} and its spectrum. The
total algebra A is then conjectured by adding to {Ak} a minimum number of other
operators such that the matrix elements of A calculated from the properties of this
algebra agree with the experimental values of the corresponding observables.

If an experiment yields more values than can be supplied by a given number of
commuting operators, then the system is not complete: one or more new quantum
numbers must be introduced, and the system of commuting operators must be
correspondingly enlarged. Finally the algebra itself must also usually be further
enlarged by adding additional operators. For example, the operators Jx = J1 and
Jy = J2 must be added to the c.s.c.o. (3.3.22) such that the J1, J2, J3 fulfill
the commutation relations of SO(3) and, together with the c.s.c.o., an algebra of
observables is formed that correctly describes additional features of a physical
system such as the vibrating-rotator.

As illustrated by the vibrating-rotator model, an increase in either energy
or precision can necessitate an enlargement of the c.s.c.o. and the algebra of
observables. Increasing the energy acting on a rotating molecule introduces the
vibrational degrees of freedom and necessitates the introduction of the operators
a and a†. Increasing the precision of the energy resolution reveals the rotational
degrees of freedom of the dumbbell and requires the introduction of the angular
momentum operators Ji .

Because of the procedure described above for obtaining the algebra of observ-
ables A , it is assumed that any algebra describing a physical system always has a
c.s.c.o. Thus for the algebra A there exists a c.s.c.o. ,

A1, A2, . . . , AN ∈ A , (3.3.23)

that have a set of (generalized) eigenvectors,4

Ak|λ1, . . . , λN 〉 = λk|λ1, . . . , λN 〉 , (3.3.24)

such that every physical state vector φ can be represented as follows:

φ =
∫

Λ

dμ〈λ)|λ1, . . . , λN 〉〈λ1, . . . , λN |φ〉 . (3.3.25)

4Mathematically this assumption can be stated: the conditions of the nuclear spectral theorem are
fulfilled.
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Here the set {λ1, λ2, . . . , λN } is the spectrum of the c.s.c.o. (3.3.23) with {λk}
being the spectrum of the observable Ak . If Ak has a continuous spectrum, then
{λk} is a set of generalized eigenvalues; if Ak has a discrete spectrum, then {λk} is
the set of all discrete eigenvalues; and if Ak has a discrete and continuous spectrum,
then {λk} is the set of all discrete and continuous eigenvalues. For the latter case,
the symbol

∫

Λ
dμ(λ) = ∫

A1

∫

A2
· · · ∫

AN
dμ(λ1, . . . , λN ) in (3.3.25) indicates a

summation over the discrete spectrum and integration over the continuous spectrum.
Thus (3.3.25) is the generalization of the spectral theorem from the single variable
to N variables λ1, . . . , λN .

It often happens that some of the observables A1, A2, . . . , AM of the
c.s.c.o. have only a continuous spectrum ΛC = {(λ1, . . . , λM)} and the
other observables AM+1, . . . , AN of the c.s.c.o. have only a discrete spectrum
ΛD = {(λM+1, . . . , λN )}. Then (3.3.25) takes the form

φ =
∫

ΛC

· · ·
∫

dμ(λ1, λ2, . . . , λM)
∑

ΛD

· · ·
∑

|λ1, . . . , λM, λM+1, . . . , λN 〉

× 〈λ1, . . . , λN |φ〉 , (3.3.26)

where the integration extends over a set of generalized eigenvalues {λk} with
k = 1, 2, . . . ,M of all observables A1, . . . , AM , and the summation runs over
all discrete eigenvalues {λk}, k = M + 1,M + 2, . . . , N of all observables
AM+1, . . . , AN , and the statement (3.3.25) or (3.3.26) is the basis of the Dirac
formulation of quantum mechanics.

In the precise mathematical formulation, using the Rigged Hilbert Space,5

(3.3.26) is the general nuclear spectral theorem for a complete system of commuting
operators with absolutely continuous spectrum. (Operators that have a singularly
continuous spectrum are excluded, but there has been no need for such operators in
quantum physics.)

A right-hand side

Φ ⊂H ⊂ Φx (3.3.27)

is constructed such that the algebra of observables is represented by an algebra of
continuous operators A in a Schwartz space Φ. The conjugate operators Ax ∈ A x

in the dual space of Φ are defined using

〈φ|AxF 〉 = 〈Aφ|F 〉 for all φ ∈ Φ, F ∈ Φx . (3.3.28)

A x also forms an algebra of operators, and they are continuous operators in the
space of continuous functionals Φx . The nuclear spectral theorem then assures that

5A. Bohm, The Rigged Hilbert Space and Quantum Mechanics, Lecture Notes in Physics, 78
(1978), Springer-Verlag, Berlin, Heidelberg, New York.
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for a complete set of commuting observables

A1, A2, . . . , AN [Aj,Ak] = 0 (3.3.29)

there is a system of generalized eigenvectors

Ai |λ1, λ2, . . . , λN 〉 = λi |λ1, λ2, . . . , λN 〉 (3.3.30)

such that every φ ∈ Φ can be expanded with respect to this basis system as
in (3.3.26).

The spectral theorem for nuclear spaces (3.3.26) thus provides the mathematical
foundation for Dirac’s formalism provided that the convergence in Φ can be defined
such that the nuclear spectral theorem is fulfilled. That is, as long as Φ is a nuclear
space.

The standard example of an algebra of operators is the enveloping algebra E (G)

of the Lie group G represented by continuous operators in the space Φ.6 In order
to represent the elements of the Lie algebra (and therewith the elements of the
enveloping algebra E (G)) by an algebra of continuous operators in a space Φ, the
convergence in the space Φ must be defined by the following countable set of scalar
products:

(ψ, φ)p = (ψ, (Δ+ 1)pφ, ‖φ‖p =
√

(φ, φ)p ; ‖φ‖0 ≤ ‖φ‖1 ≤ ‖φ‖2 · · ·
(3.3.31)

where p = 1, 2, 3, . . . . Here Δ is the Nelson operator defined by Δ =∑
X2

i where
Xi, i = 1, 2, 3, . . . , N are the generators of the unitary representation of G and are
also the generators of the enveloping algebra E (G). For example, for E (SO(3)),
Δ = J2, and for E (E(3)), Δ = J2+Q2. The convergence of a sequence of φν ∈ Φ

is defined by

φν
τΦ−→φ ⇔ ‖φν − φ‖p → 0 for every p = 0, 1, 2, 3, . . . . (3.3.32)

The Nelson operator Δ is essentially self-adjoint in Φ iff the Xi are generators
of a unitary representation and the Xi are continuous operators with respect to
convergence in the space Φ. Possible applications of this mathematical result
in physics are the Spectrum Generating Groups G or the Symmetry Groups S

described by unitary group representations g → U(g) in H .

6For example, the group G could be the rotation group SO(3) describing an elementary rotator and
E (SO(3)) is the algebra generated by the angular momentum operators Ji discussed in Chap. 2,
Sect. 2.3. Or if G is the group E(3), then E (G) is the algebra generated by the momentum operators
Ji and the position operators Qi describing the rotating dumbbell of Chap. 2, Sect. 2.4.
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For a self-adjoint Hamiltonian, which is often an element of E (G) = E (3), this
leads to generalized eigenvectors of the Hamiltonian H:

|E, j, j3〉 ∈ Φx with 〈H φ|E, j, j3〉 = E〈φ|E, j, j3〉 for all φ ∈ Φ, 0 ≤ E <∞ ,

(3.3.33)

and to time evolution for the observable |ψ〉〈ψ| is given by the unitary group U(t) =
eiHt/h̄:

〈eiH t/h̄ψ |E, j, j3〉 = 〈ψ |eiH t/h̄|E, j, j3〉 = e−iEt/h̄ 〈ψ |E, j, j3〉 , −∞ < t <∞ ,

(3.3.34)

where E = Ej = h̄2 j (j+1)/(2I) in the case of the rigid rotator Hrotator = J2/(2I).
An immediate consequence of the statement (3.3.24), (3.3.25), or (3.3.26)

is the following: Let A1, . . . , AN be a c.s.c.o. with (generalized) eigenvectors
|λ1, . . . , λN 〉 = |λ〉 such that

Ak|λ〉 = λk|λ〉 (k = 1, 2, . . . , N) . (3.3.35)

Then if another system of eigenvectors |a>= |a1, a2, . . . , aN > is found with the
property

Ai |a>= ai |a> (i = 1, 2, . . . , N) (3.3.36)

it follows that

{ai} = {λi} and |a>= α|λ〉 , (3.3.37)

where α ∈ C.

3.4 The Vibrating Rotator

The vibrating rotator is an instructive example for the combination of two quantum
physical systems that has clearly been observed in the infrared spectra of diatomic
molecules. A theoretical description requires the combination of the oscillator
(Chap. 1) and the rotator (Chap. 2).

The space of physical states of the oscillator is denoted Hoscillator, and a basis
system of eigenvectors of the operator Hoscillator in Hoscillator is

basis system for Hoscillator : |n〉, n = 0, 1, 2, . . . . (3.4.1)

The action of all observables (all elements of the algebra of observables) of the
quantum-mechanical oscillator on the basis vectors |n〉 is known from Chap. 1.
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Similarly, in Chap. 2 the space of physical states of the rotator is denoted�. In �
a basis system of eigenvectors of the operators L3 and L2 is

basis system for � : |�,m〉, l = 0, 1, 2, . . . , m = −�,−�+ 1, . . . , � .

(3.4.2)

The above basis vectors are eigenvectors of the operators L3 and Hrotator = L2/(2I)

with respective eigenvalues h̄m and h̄2�(�+ 1)/(2I).
The space of physical states of the vibrating rotator is, according to Fundamental

Postulate IV, the direct-product space

Hvibrating-rotator =Hoscillator⊗� , (3.4.3)

and the observables are the operators
∑

i A
(i)
oscillator⊗A

(j)
rotator where A

(i)
oscillator is any

observable of the oscillator and A
(j)
rotator is any observable of the rotator. The basis

system in Hvibrating-rotator is the direct product of the basis systems |n〉 in Hoscillator
and |�,m〉 in �, and is denoted by |n, �,m〉,

|n, �,m〉 = |n〉 ⊗ |�,m〉 . (3.4.4)

The classical picture for such a vibrating rotator is a dumbbell consisting of two
mass points (atomic nuclei) connected by a spring with spring constant k as shown
in Fig. 3.3.

For the idealized situation in which the harmonic vibrations do not affect the
rigid rotation and vice versa, the energy operator of this physical combination of the
harmonic oscillator and rigid rotator is given by

H = Hoscillator⊗ 1+ 1⊗Hrotator , (3.4.5)

where

Hoscillator = P2

2μ
+ 1

2
kQ2 = h̄ω(N + 1

2
1) , Hrotator = L2

2I
. (3.4.6)

In the above equation the constants μ, k and I are, respectively, the reduced mass,
the spring constant and the moment of inertia. Treating the molecule as a dumbbell

Fig. 3.3 Vibrating, rotating
dumbbell
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that oscillates and rotates independently is clearly an idealization since oscillations
affect the moment of inertia and the rate of rotation affects the equilibrium position
of the oscillator. To a first approximation the interplay between oscillations and
rotations is neglected with the result that observables have the form,

A = Aoscillator⊗ 1+ 1⊗ Arotator . (3.4.7)

The energy spectrum of the idealized vibrating rotator is obtained by applying
the Hamiltonian (3.4.5) to the basis vectors (3.4.4),

H |n, l,m〉 = (Hoscillator⊗ 1+ 1⊗Hrotator) (|n〉 ⊗ |�,m〉)
= (Hoscillator|n〉 ⊗ |�,m〉 + |n〉 ⊗Hrotator|�,m〉

= [h̄ω

(

n+ 1

2

)

+ h̄2

2I
�〈�+ 1)]|n, l,m〉 . (3.4.8a)

The final line in the above equation was obtained by first using (3.4.6) and then
(2.3.35). From (3.4.8a) the energy eigenvalues En,� of the vibrating rotator are

En,� = h̄ω

(

n+ 1

2

)

+ h̄2

2I
�(�+ 1) , n = 0, 1, 2, . . . , � = 1, 1, 2, . . . .

(3.4.8b)

From experiments with vibrating diatomic molecules, the constant h̄ω is known
to be on the order of 0.2 eV, and from rotational spectra, h̄2/2I is on the order
of 10−3 eV. Thus pure vibrational and pure rotational transitions are, respectively,
in the near and far infrared. The energy levels of a vibrating rotator are shown in
Fig. 3.4 on the next page.

To obtain the frequencies ν of light emitted or absorbed as a transition occurs
between energy levels, from Chap. 1 recall that harmonic oscillator transitions
occur between adjacent levels. Similarly, dipole transitions of the rigid rotator occur
between adjacent rotator levels. Thus the selection rules for the vibrating rotator are
as follows:

harmonic oscillator: Δn = ±1 (3.4.9a)

rotator: Δ� = ±1 (3.4.9b)

If Δn = 0, then only the rotational spectrum resulting from rotation is observed,
and if Δ� = 0, then only the spectrum resulting from oscillation is observed. The
more interesting spectra occur when both n and � change. For a harmonic oscillator
transition from n to n+ 1 (energy absorption), the two possibilities for which there
is a rotator transition are Δ� = ±1. From (3.4.8b), the frequencies of absorbed light
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Fig. 3.4 Energy levels of the vibrating rotator. For each of the first five vibrational levels (long
horizontal lines), a number of rotational levels (short horizontal lines) are drawn [from Herzberg
(1966), with permission]

are as follows:

νR = En+1,�+1 − En,�

2πh̄
= 1

2π

[

ω + h̄(�+ 1)

I

]

Δ� = +1, (3.4.10a)

νP = En+1,�−1 − En,�

2πh̄
= 1

2π

[

ω − h̄�

I

]

Δ� = −1. (3.4.10b)

Transitions for which Δ� = 1 and Δ� = −1 are called, respectively, the R branch
and the P branch.

The energy levels of a diatomic molecule can be determined by a spectrometer
that detects photons absorbed (or emitted) as molecules make transitions from
one energy level to another. If the resolution (or sensitivity) of the spectrometer
is not sufficiently good, a single broad spectral line for CO at ν = 2140 cm−1

is observed that corresponds to transitions between adjacent harmonic oscillator
levels.7 However, if the resolution of the spectrometer is improved, the broad
spectral line for CO is resolved into a whole band of narrow spectral lines that
occur as a result of the rotation of the molecule and are shown in Fig. 3.2 on
page 148. Figure 3.5 shows the transitions between the energy bands of two adjacent
vibrational states and their correspondence to the spectra of Fig. 3.2. The branch

7As is customary in the literature on molecular spectra, frequencies have been converted to wave-
number units by dividing by a factor of c (in cm/s), resulting in frequencies measured in cm−1.
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Fig. 3.5 Origin and
appearance of rotational
structure. P and R branches
are shown to the left and
right, respectively, on the
spectrometer tracing of the
CO fundamental absorption
band at 2144 cm−1. The Q
branch (dashed line) is
missing. Energy levels are
shown to scale except that the
distance between upper and
lower vibrational states (2144
cm−1 should be about five
times as great as in the figure
[from Bauman (1962), with
permission]
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with increasing frequencies is called the R branch. For the R branch the minimum
value of � is zero corresponding to a transition from � = 0 to � = 1. From (3.4.10a),
the R branch frequencies are

νR = (ω + h̄/I)/2π, (ω + 2h̄/I)/2π, (ω + 3h̄/I)/2π, . . . . (3.4.11a)

The branch with decreasing frequencies is called the P branch, and the minimum
value of � is unity, corresponding to a transition from � = 1 to � = 0. From
(3.4.10b), these frequencies are

νP = (ω − h̄/I)/2π, (ω − 2h̄/I)/2π, (ω − 3h̄/I)/2π, . . . . (3.4.11b)

Note that as predicted by the spectra for νR and νP in (3.4.11), the frequency ω/(2π)

is missing! In Fig. 3.2 on page 148 a corresponding “spike” is missing at ω/(2π) =
ν = 2140 cm−1.

From the experimental values for the gaps between successive spikes of the
vibrational-rotational spectra of the CO molecule depicted in Fig. 3.2, the following
experimental values are determined:

h̄

2πICO
= 1.18× 1011 Hz , (3.4.12a)

or

h̄

2πcICO
= 3.94 cm−1 . (3.4.12b)

The relationship between an absorbed frequency and the pair of energy levels
between which the transition took place are shown in Fig. 3.5 on the facing page.
Comparing with (3.4.10), the formulas for νR and νP (in cm−1) are, respectively,

νR = En+1,�+1 − En,�

2πh̄c
= ν0 + 2B(�+ 1), Δ� = +1 , (3.4.13a)

νP = En+1,�−1 − En,�

2πh̄c
= ν0 − 2B� , Δ� = −1 , (3.4.13b)

where

ν0 = ω

2πc
, B = h̄

4πcI
. (3.4.14)

Frequencies have been converted to wave-number units in the above two formulas
by dividing by a factor of c. The frequency spectrum calculated in (3.4.11)
or (3.4.13) is depicted in strip (b) of Fig. 3.6 on the next page.
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Fig. 3.6 Energy-level diagram explaining the fine structure of a rotation-vibration band. In general
the separation of the two vibrational levels is considerably larger compared with the spacing
of the rotational levels than shown in the figure (indicated by the broken parts of the vertical
lines representing the transitions). The schematic spectrograms (a) and (b) give the resulting
spectrum with and without allowance for the interaction between rotation and vibration. In these
spectrograms, unlike most of the others, short wavelengths are at the left. Note that the R- and
P-branches are on opposite sides of Figs. 3.5 on page 156 and 3.6 [from Herzberg (1966), with
permission]
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3.4.1 The Interplay of Rotations and Vibrations

The observed spectrum from Fig. 3.5 on page 156 is depicted in strip (a) of
Fig. 3.6 on the preceding page. The prediction of the vibrating-rotator model
without interaction between vibration and rotation agrees well, but not precisely.
Because a vibrating rotator cannot be rigid, the moment of inertia I cannot be a
constant. As a result of this interplay between rotations and vibrations, the observed
lines in the R branch draw closer together, and those in the P branch move farther
apart than indicated by the equidistant lines.

Since the moment of inertia I is different in different vibrational states, I depends
on the vibrational quantum number, I → In. Instead of (3.4.8b)

Enl = h̄ω(n+ 1

2
)+ 1

2In

h̄2�(�+ 1) (3.4.15)

The moment of inertia is no longer a constant system parameter but instead is an
operator that takes different expectation values depending on the vibrational state,
In = 〈n|I |n〉.

With the aid of (3.4.15), the wave numbers of the resulting lines are

ν = En′�′ − En′′�′′

2πh̄c
= ν0(n

′ − n′′)+ Bn′�
′(�′ + 1)− Bn′′�

′′(�′′ + 1) , (3.4.16a)

where

Bn = h

8π2cIn

. (3.4.16b)

The absorption frequencies (in wave number units cm−1) for transitions n′′l′′ → n′l′
between neighboring vibrational levels are as follows:

νR = ν0(n
′ − n′′)+ 2Bn′+(3Bn′ − Bn′′ )�+ (Bn′ − Bn′′ )�

2

(�′ = �+ 1, �′′ = �, Δ� = +1) , (3.4.17a)

νP = ν0(n
′ − n′′)− (Bn′+Bn′′ )�+ (Bn′ − Bn′′ )�

2

(�′ = �− 1, �′′ = �, Δl = −1) . (3.4.17b)

Equations (3.4.17) give an excellent agreement with the empirical fine structure of
the infrared bands.

For the HCl molecule, the values of Bn have been determined empirically for the
various bands n′ ↔ n′′:

0 ↔ 1 0 ↔ 2 0 ↔ 3 0 ↔ 4 0 ↔ 5 (3.4.18)
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Table 3.3 Rotational
constants of HCl in the
different vibrational levels of
the electronic ground state
[from Herzberg (1966), p.
800, with permission]

n Bn (cm−1) ΔBn (cm−1)

0 10.4400 0.3034

1 10.1366 0.3037

2 9.8329 0.2986

3 9.5343 0.302

4 9.232 0.299

5 8.933

Transitions with Δn > 1 occur as a consequence of the small anharmonicity, and the
values of Bn are summarized in Table 3.3. As the value of the vibrational quantum
number increases, the amplitude of vibration increases, the moment of inertia
increases and, from (3.4.16b), Bn decreases. The difference ΔBn ≡ Bn − Bn+1
between successive values is very nearly a constant, so that Bn can be fitted by the
formula

Bn = Be − αe(n+ 1

2
) , (3.4.19)

where αe is a constant small compared with Be = 10.5909 cm−1, the equilibrium
value of Bn.

Although experimental values for the vibration-rotation spectra of the CO mole-
cule are neither as numerous nor as accurate as those for HCl, from the spectrum
depicted in Fig. 3.5 on page 156 it is possible to calculate

BCO = 1.96 cm−1 . (3.4.20)

This value, and hence the fine structure in the energy spectrum, is considerably
smaller than that for HCl as given in Table 3.3.

The diatomic molecule with the largest rotational constant Be, and thus the
largest energy difference between rotational levels, is the H2 molecule for which
B

H2
e = 60.80 cm−1.

A qualitative theoretical explanation of (3.4.15), where the empirical expression
for In can be obtained by combining (3.4.16b) and (3.4.19), follows from the
classical picture Fig. 3.3 on page 153 of the diatomic molecule as two rigid spheres
connected by a spring. When the dumbbell is in a state of higher vibrational energy,
it has a larger amplitude and consequently a larger moment of inertia, implying that
I−1
n decreases with increasing n.

For the quantum-mechanical observables, the empirical formula (3.4.19) reveals
that the form (3.4.5) is inadequate to describe the energy levels of a diatomic
molecule: an interaction Hamiltonian Hint between vibrational and rotational
degrees of freedom is needed. The preceding discussion suggests an interaction term
of the form

Hint = gHoscillator⊗Hrotator , (3.4.21)
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where g is a coupling constant of dimension (eV)−1. Including the interaction
Hamiltonian (3.4.21), the energy operator for the vibrating, rotating, interacting
diatomic molecule is given by

H = Hoscillator⊗ 1+ 1⊗Hrotator + gHoscillator ⊗Hrotator , (3.4.22a)

where

Hoscillator = h̄ω(N + 1

2
1) , (3.4.22b)

and

Hrotator = 1

2Ie

L2 . (3.4.22c)

The characteristic angular frequency ω = √
k/μ is the system constant of the

oscillator, and Ie is the value of the moment of inertia at the equilibrium separation
xe. That is, Ie = μx2

e is the system constant of the rotator.
The energy values of the diatomic molecule with vibration-rotation interaction

are the expectation values of H in the physical states. It is not obvious that the
vectors |n, �,m〉 = |n〉 ⊗ |�,m〉 of (3.4.4), where |n〉 are eigenvectors of N and
|�,m〉 are eigenvectors of L2 and L3, represent the pure states of this physical
system. However, as they also happen to be eigenstates of the energy operator H

of (3.4.22a), they are the obvious choice for states in an energy measurement. The
energy values are the eigenvalues of H in the basis |n, �,m〉:

Enl = h̄ω(n+ 1

2
)+ 1

2Ie

h̄2�(�+ 1)+ gh̄ω
h̄2

2Ie

(n+ 1

2
)�(�+ 1) . (3.4.23)

The wave number νn� (frequency in cm−1) of the radiation quantum corresponding
to the energy value En� is

νn� = En�

2πh̄c
, (3.4.24)

and is called the term value.8

From (3.4.23) the term values of the vibrating rotator are

νn� = ν0(n+ 1

2
)+ [Be − αe(n+ 1

2
)]�(�+ 1) , (3.4.25)

8Note that the same symbol ν is used for the frequency (in s−1) and the wave number (in cm−1).
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where the following standard notation of molecular spectroscopy has been used:

Be = h̄

4πcIe

= h̄

4πcμx2
e

, αe = −gν0h̄
2

2Ie

, Bn = Be − αe(n+ 1

2
) .

(3.4.26)

According to the above qualitative considerations, I−1
n (and, therefore, Bn) depends

on n. As a consequence, αe should be larger than zero, a condition that is always
fulfilled experimentally. Equation (3.4.25) with (3.4.26) gives the following wave
numbers for transitions in the R branch:

νR = νn′�+1 − νn′′� = ν0(n
′ − n′′)+ 2Bn′ + (3Bn′ − Bn′′ )�+ (Bn′ − Bn′′ )�

2 .

(3.4.27a)

The wave numbers in the P branch are

νP = νn′�−1 − νn′′� = ν0(n
′ − n′′)− (Bn′ + Bn′′ )�+ (Bn′ − Bn′′ )�

2 . (3.4.27b)

The above two formulas are, respectively, the well-established empirical formulas
(3.4.17a) and (3.4.17b), verifying that (3.4.21) was a good guess.

Equation (3.4.25) is not the end of the story of the vibrating and rotating
diatomic molecule because anharmonic effects of the oscillator and the influence
of centrifugal forces have not been taken into account. When these effects are also
taken into account, to a higher degree of accuracy the term values of a vibrating
rotator are

νn� = ωe(n+ 1

2
)− ωeξe(n+ 1

2
)2 + Bn�(�+ 1)−Dn�

2(�+ 1)2 . (3.4.28)

In the above equation ωe is the standard notation for

ωe = ω

2πc
= 1

2πc

√

k

μ
= ν0 , (3.4.29a)

where ν0 was originally defined in Eq. (3.4.14). ξe is a small parameter expressing
the anharmonicity,9 and

Bn = Be − αe(n+ 1

2
) , (3.4.29b)

Dn = De + βe(n+ 1

2
) . (3.4.29c)

Be is given by (3.4.26).

9ωeξe is given by the anharmonicity of the oscillator (terms proportional to Q3, Q4, etc.) and can
be calculated by perturbation theory.
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According to the semiclassical consideration leading to (V.4.56), De may be
expressed in terms of the reduced mass μ, equilibrium separation xe and spring
constant k:

De = h̄3

4πckμ2x6
e

. (3.4.30)

From (3.4.29a), (3.4.26) and (3.4.30) it follows that the three system parameters De,
Be and ωe are not independent but instead are related by

De = 4B3
e

ω2
e

. (3.4.31)

The parameters ξe, αe and βe that express the degree of anharmonicity are known
empirically to be small:

ξe % 1 ,
αe

Be

% 1 ,
βe

De

% 1 , (3.4.32)

which must be the case since they represent the effect of corrections to models
that are rather precisely realized by microphysical systems in nature. The system
parameters ωe, ξe, Be, De, αe and βe have been experimentally determined
for many diatomic molecules and are collected in tables [cf. Herzberg (1966)].
Eq. (3.4.28) gives a very good description of the vibration-rotation spectra of
diatomic molecules, and higher-order corrections are needed only in exceptional
cases.

Diatomic molecules are vibrating rotators only as long as the internal energy
is sufficiently low-roughly, in the region of energy of infrared radiation. For
higher energies in the range 1–20 eV, corresponding to the visible and ultraviolet
regions, the molecules are no longer just vibrating rotators because new degrees of
freedom become accessible to electronic transitions. However, in each electronic
state the molecule is still a vibrating rotator. This leads to energy spectra depicted
schematically in Fig. 3.7 on the next page for two electronic states. The electronic
structure of molecules will not be discussed here, but it is similar to the electronic
structure of atoms.

3.5 Addition of Two Angular Momenta: Clebsch-Gordan
Coefficients

In classical mechanics angular momentum is a vector quantity, implying that two
angular momenta Sclassical

a and Sclassical
b are added vectorially, Sclassical

total = Sclassical
a +

Sclassical
b .

From the correspondence principle, if quantum system a has an angular momen-
tum operator Sa in the space �a , and if a second quantum system b has an
angular momentum operator Sb in the space �b, then combining the two systems
according to Fundamental Postulate IV, the total angular momentum operator S of
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Fig. 3.7 Vibrational and rotational levels of two electronic states A and B of a molecule
(schematic). Only the first few rotational and vibrational levels are drawn in each case [from
Herzberg (1966), with permission]

the combined system is

S = Sa × 1
︸ ︷︷ ︸

Sa

+ 1× Sb
︸ ︷︷ ︸

Sb

(3.5.1)
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in the direct-product space

� = �a ⊗�b = �ja ⊗�jb . (3.5.2)

There are many physical examples for such a combination of two quantum
physical rotators. For example, a deuteron is a bound state of a proton and a neutron,
each of which has a spin = 1/2. If the proton and neutron have no relative orbital
angular momentum, the total angular momentum SD of the deuteron is the sum of
the spin angular momenta of the two constituents, SD = Sp + Sn. For the hydrogen
atom, the total angular momentum J of the orbiting electron is the sum of its orbital
angular momentum L and its spin angular momentum S,

J = L+ S . (3.5.3)

When only the rotational properties of an elementary particle such as a proton,
neutron, or electron are considered, the system is called an elementary rotator. Here
the proton in the deuteron is taken to be an elementary rotator with spin angular
momentum sp = 1/2; its space of physical states is therefore the space �s=1/2

p of
angular momentum s=1/2. Similarly, the neutron is also an elementary rotator with
sn = 1/2 in a space of physical states �s=1/2

n . Because all other properties of the
neutron and proton are being ignored, these two spaces are the same (isomorphic)
angular momentum spaces �1/2 of Chap. 2. To an excellent approximation, the
neutron and proton in a deuteron have no orbital angular momentum. Thus,
according to the Fundamental Postulate IV, the rotational properties of the deuteron
are described by the direct-product space10

� = �s=1/2
p ⊗�s=1/2

n . (3.5.4)

Similarly, for the orbiting and spinning electron in the hydrogen atom with orbital
angular momentum � and spin-1/2 the space of physical states is

� = ��
m ⊗�1/2 . (3.5.5)

Equations (3.5.4) and (3.5.5) are special cases of a very general result. In accor-
dance with Fundamental Postulate IV for combining physical systems, whenever
two rotational motions are combined, one described by �j

a and the other by �j
b , the

combined rotational motion is described by the direct-product space

� = �ja ⊗�jb . (3.5.6)

10For an orbital angular momentum � = 2 component of the deuteron see H. Frauenfelder and E.
M. Henley, Subatomic Physics, Sect. 14.5, Prentice Hall (1991).
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Equation (3.5.6) is true unless �ja and �jb describe identical quantum systems.
If ja = jb are half-integers, the constituents are fermions, and the anti-symmetric
subspace of (3.5.6) must be chosen. If ja = jb are integers, the constituents are
bosons, and the symmetric subspace of (3.5.6) must be chosen. For the total angular
momentum of an electron in a hydrogen atom, the orbital angular momentum �

(ja = �) of the electron is combined with the spin se = 1/2 (jb = 1/2) of the
electron, so ja and jb are associated with the same constituent. In the deuteron ja

and jb are, respectively, the spin of the proton and neutron so they are associated
with different constituents. There are numerous other examples in quantum physics
for the combination—also called “addition”—of two angular momenta.

The general case described by (3.5.6) will now be discussed. The two angular
momenta that are to be combined are denoted Ja and Jb. Each may represent either
spin, orbital angular momentum, or both. The operator Ja acts in the space�j

a and Jb

acts in the space �j
b .

Classically, if an object possesses both orbital angular momentum l and spin
angular momentum s, the total angular momentum j is the vector sum j = l +
s. From the correspondence between classical and quantum mechanics, the total
angular momentum operator J is given by

J = Ja ⊗ 1+ 1⊗ Jb , (3.5.7)

where Ja acts in �ja and Jb acts in �jb . In component notation the above equation
is

Ji = Jai ⊗ 1+ 1⊗ Jbi , i = 1, 2, 3 or i = x, y, z . (3.5.8)

Experiments have verified that angular momentum in quantum mechanics is additive
as expressed by (3.5.6), which are special cases of Fundamental Postulate IV.

Before delving into the details of how to add angular momentum in quantum
mechanics, first consider the problem from a classical viewpoint. If a deuteron is
made from a proton and neutron with respective spins sp = 1/2 and sn = 1/2 and
no relative orbital angular momentum, it is reasonable to guess that if the spins are
“parallel,” the total angular momentum j = 1/2 + 1/2 = 1, and if the spins are
“antiparallel”, the total angular momentum is 1/2− 1/2 = 0. This intuitive result is
correct. A surprise occurs, however, when a vector diagram is drawn corresponding
to the operator relationship J = Sp + Sn. Since the eigenvalue of J2 is h̄2j (j + 1),
the “length” of J is h̄

√
j (j + 1), which equals h̄

√
2 for j = 1. Similarly, for s =

1/2, the “length” of Sp and Sn is h̄
√

3/2. From Fig. 3.8 on the facing page it is
immediately apparent that the expectation value of the spin operators Sp and Sn

are not parallel. This quantum effect occurs because the expectation value of J2 is
h̄2j (j + 1), not h̄2j2. From the above discussion, it follows that adding angular
momenta in quantum mechanics is more involved than just adding vectors.

From the algebraic commutation relations (2.3.1), the properties of the operators
Jai and Jbi were determined. In particular, for each integer or half-integer value of
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Fig. 3.8 Vector relationship
J = Sp + Sn for j=1, sp=1/2
and sn=1/2

ns

ps

J

3
2

2√

√

3
2
√

ja or jb, there is a representation space �ja or �jb , respectively, in which the Jai

and Jbi act. Since the operators Jai and Jbi act in different spaces, they commute,
[Jai , Jbj ] = 0. It then immediately follows that the total angular momentum
operator J as given in (3.5.7) fulfills the commutation relations (2.3.1). Therefore,
the Ji act in the direct-product space (3.5.6) that is characterized by a single number
j , called the total angular momentum, which is either an integer or half integer.
The following question then immediately arises: in the direct-product space (3.5.6),
which values of the angular momentum are possible for J of (3.5.7)? In other
words, when two physical systems with respective angular momenta ja and jb

are combined, what are the possible values j of total angular momentum? In the
remainder of this section this and related questions will be answered.

The basis vectors of �ja and �jb , denoted respectively by |ja,ma〉 and |jb,mb〉,
satisfy

J2
a|ja,ma〉 = h̄2ja(ja + 1)|ja,ma〉 , Ja3|ja,ma〉 = h̄ma |ja,ma〉 , (3.5.9a)

J2
b|jb,mb〉 = h̄2jb(jb + 1)|jb,mb〉 , Jb3|jb,mb〉 = h̄mb|jb,mb〉 . (3.5.9b)

A basis system in the direct-product space � = �ja ⊗ �jb is, according to the
definition of �, given by

|ja,ma〉 ⊗ |jb,mb〉 ≡ |ja,ma, jb,mb〉 , (3.5.10)

and is called the direct-product basis. The left-hand side of (3.5.10) is the definition
of basis vectors in the direct-product space (3.5.6), and the right-hand side defines a
new symbol for the basis vectors.
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In the direct-product space �, using vector notation the angular momentum
operators are given by (3.5.7), and using component notation are given by (3.5.8).
The basis system (3.5.10) consists of eigenstates of the following complete set of
commuting operators

J2
a, Ja3, J2

b, Jb3 , (3.5.11)

with the respective eigenvalues

J2
a|ja,ma〉 ⊗ |jb,mb〉 = h̄2ja(ja + 1)|ja,ma〉 ⊗ |jb,mb〉 , (3.5.12a)

Ja3|ja,ma〉 ⊗ |jb,mb〉 = h̄ma |ja,ma〉 ⊗ |jb,mb〉 , (3.5.12b)

J2
b|ja,ma〉 ⊗ |jb,mb〉 = h̄2jb(jb + 1)|ja,ma〉 ⊗ |jb,mb〉 , (3.5.12c)

Jb3|ja,ma〉 ⊗ |jb,mb〉 = h̄mb|ja,ma〉 ⊗ |jb,mb〉 . (3.5.12d)

A basis is said to be physical if it consists of eigenstates in which the physical
system appears, and the basis (3.5.10) is, in general, not a physical basis for a
combined system. Stationary states (states that do not change in time) are always
eigenstates—or mixtures of eigenstates—of the Hamiltonian H , so physical systems
such as atoms and molecules are eigenstates of the Hamiltonian. The state vectors
that describe these physical states must consist of eigenvectors of operators that
commute with the Hamiltonian. If the physical system is spherically symmetric or
rotationally invariant, implying that [H, Ji] = 0, then not all of the Jai ,and Jbi

commute with the Hamiltonian, and the direct-product eigenvectors (3.5.10) are
in general not eigenvectors of the Hamiltonian and, as a consequence, are not a
physical basis system.

A rotationally invariant Hamiltonian commutes with the total angular momen-
tum J2. Energy eigenstates can, therefore, be eigenstates of total angular momen-
tum J2 and J3 where

J2 = (Ja + Jb) · (Ja + Jb) = J2
a + J2

b + 2
3
∑

i=1

JaiJbi

= J2
a + J2

b + 2Ja3Jb3 + Ja+Jb− + Ja−Jb+ , (3.5.13a)

J3 = Ja3 + Jb3 . (3.5.13b)

But energy eigenstates are usually not eigenvectors of Ja3 and Jb3.
The four eigenvalues of the four operators (3.5.11) are required to completely

specify the basis system (3.5.10). Therefore any other complete set of commuting
operators will usually consist of four operators provided only discrete eigenvalues
are involved. While J2 and J3 don’t represent a complete set of commuting
operators, it is easy to determine two additional operators that commute with J2

and J3. Since [Jai, Jbk] = 0 and J2
a commutes with all Jai , J2

a also commutes with
J2 and J3. Similarly, J2

b commutes with J2 and J3. Since the operators J2
a and J2

b
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commute with each other, a complete set of commuting operators is also given by

J2
a, J2

b, J2, J3 . (3.5.14)

A basis system of normalized eigenvectors for these operators is denoted by

|ja, jb, j,m〉 . (3.5.15)

These total angular momentum eigenvectors satisfy

J2
a|ja, jb, j,m〉 = h̄2ja(ja + 1)|ja, jb, j,m〉 , (3.5.16a)

J2
b|ja, jb, j,m〉 = h̄2jb(jb + 1)|ja, jb, j,m〉 , (3.5.16b)

J2|ja, jb, j,m〉 = h̄2j (j + 1)|ja, jb, j,m〉 , (3.5.16c)

J3|ja, jb, j,m〉 = h̄m|ja, jb, j,m〉 (3.5.16d)

and are called the total angular momentum basis vectors. Often the respective
eigenvalues h̄2ja(ja + 1) and h̄2jb(jb + 1) of J2

a and J2
b are fixed so the labels

ja and jb are omitted for notational simplicity, and |ja, jb, j,m〉 ≡ |j,m〉.
The two different basis systems (3.5.10) and (3.5.15) span the same space � in

(3.5.6); consequently, each of the basis vectors (3.5.10) can be expressed in terms
of the the basis system (3.5.15),

|ja,ma, jb,mb〉 =
∑

j,m

|ja, jb, j,m〉〈ja, jb, j,m|ja,ma, jb,mb〉 , (3.5.17)

and each basis vector of the basis (3.5.15) can be expanded with respect to the basis
system (3.5.10),

|ja, jb, j,m〉 =
∑

ma,mb

|ja,ma, jb,mb〉〈ja,ma, jb,mb|ja, jb, j,m〉 . (3.5.18)

The expansion coefficients 〈ja,ma, jb,mb|ja, jb, j,m〉 are the scalar product of
the vector |ja,ma〉 ⊗ |jb,mb〉 with |ja, jb, j,m〉 and are called Clebsch-Gordan or
Wigner coefficients. For fixed values of ja and jb they are denoted in various ways
in the literature, the most common being

〈ja,ma, jb,mb|ja, jb, j,m〉 = (〈ja,ma| ⊗ 〈jb,mb|, |ja, jb, j,m〉) ,

= 〈ja,ma, jb,mb|j,m〉 ,
= C(ja, jb, j,ma,mb,m) ,

= C
ja jb j
ma mb m ,

= 〈ma,mb|j,m〉 .

(3.5.19)
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In the final expression for Clebsch-Gordan coefficients in the above equation, the
quantum numbers ja and jb have been suppressed because they remain unchanged.

Taking the scalar product of (3.5.17) with |ja,m
′
a, jb,m

′
b〉 the orthogonality

relation of the Clebsch-Gordan coefficients is obtained:

δm′a,ma
δm′b,mb

= 〈ja,m
′
a, jb,m

′
b|ja,ma, jb,mb〉

=
∑

j,m

〈ja,m
′
a, jb,m

′
b|ja, jb, j,m〉〈ja, jb, j,m|ja,ma, jb,mb〉 . (3.5.20)

Similarly, taking the scalar product of (3.5.18) with |ja, jb, j
′,m′〉, a second

orthogonality relation relation results:

δj,j ′δm,m′ = 〈ja, jb, j
′,m′|ja, jb, j,m〉

=
∑

ma,mb

〈ja, jb, j
′,m′|ja,ma, jb,mb〉〈ja,ma, jb,mb|ja, jb, j,m〉 . (3.5.21)

The Clebsch-Gordan coefficients are needed when two quantum systems with ja

and jb are combined into a single quantum system with “total” angular momen-
tum j . This is an important problem in physics: if the system is spherically
symmetric or rotationally invariant, then the eigenvectors |ja, jb, j,m〉 of total
angular momentum can be energy eigenstates, whereas the direct-product basis
vectors are usually not. Thus the transformation (3.5.18) is very important because
it relates the direct-product basis to the physical basis, and a knowledge of the
transformation coefficients (3.5.19) permits this transformation to be made.

Several properties of the space � = �ja ⊗ �jb of (3.5.6) can readily be
determined: (1) How many eigenvectors are required to span the space �?
For the basis system (3.5.10), there are (2ja + 1) eigenvectors |ja,ma〉 and
(2jb + 1) eigenvectors |jb,mb〉. Therefore, there are (2ja + 1)× (2jb+ 1) linearly
independent eigenvectors |ja,ma〉 ⊗ |jb,mb〉. But since the eigenvectors (3.5.15)
span the same space, there must be (2ja + 1) × (2jb + 1) linearly independent
eigenvectors |ja, jb, j,m〉. (2) What are the possible values of j in the space �?
The basis vectors in the basis system (3.5.8) are also eigenvectors of J3,

J3|ja,ma〉 ⊗ |jb,mb〉 = (Ja3 + Jb3)|ja,ma〉 ⊗ |jb,mb〉
= [Ja3|ja,ma〉] ⊗ |jb,mb〉 + |ja,ma〉 ⊗ [Jb3|jb,mb〉]

= h̄(ma +mb)|ja,ma〉 ⊗ |jb,mb〉 , (3.5.22)

with an eigenvalue m = ma + mb. Since the maximum value of ma is ja , and the
maximum value of mb is jb, the maximum value of m is ja + jb. Therefore, the
maximum value of the total angular momentum j is jmax = ja + jb. This result
is easy to understand intuitively: the maximum value of total angular momentum
occurs when Ja and Jb are “parallel”. Similarly, if Ja and Jb are “antiparallel”, the
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total angular momentum would be a minimum and is given by jmin = |ja − jb|.
The maximum and minimum values for j are now known. What other values are
allowed? Since the eigenvalue m of J3 changes in integer steps from mmax = ja+jb,
the only allowed values of j must differ from jmax by an integer. From the discussion
it is not obvious that every value of j that can appear, will actually appear and that
each value of j will appear only once. However, it turns out that each value of j

does appear exactly once,11 so the possible values of j are

j = ja + jb, ja + jb − 1, ja + jb − 2, ..., |ja − jb| . (3.5.23)

The above result can be written in terms of spaces as

� = �ja ⊗�jb = �ja+jb ⊕�ja+jb−1 ⊕ · · · ⊕ �|ja−jb| , (3.5.24)

and is called the reduction of the direct-product space into a direct sum of irreducible
total angular momentum spaces.

Summarizing, the space�ja⊗�jb is, in general, not an irreducible representation
space or ladder representation space of the algebra of total angular momentum
E (SO(3)ji ). That is, not all vectors of �ja ⊗ �jb can be obtained by applying the
J± a sufficient number of times to one of its vectors. Instead, the space �ja ⊗ �jb

is is the direct sum of several such irreducible representation spaces �j as given in
(3.5.24). Also, the Clebsch-Gordan coefficients, which are the transition coefficients
between the two basis systems (3.5.10) and (3.5.15), are zero unless m = ma +mb

and j is given by one of the values in (3.5.23):

C
ja jb j
ma mb m = 0 for m �= ma +mb, j �= ja + jb, ja + jb − 1, . . . , |ja − jb| .

(3.5.25)

Before deriving a general formula for Clebsch-Gordan coefficients, to familiarize
the reader with the ideas and mathematics, Clebsch-Gordan coefficients are first
derived for two specific, simple examples.

Example 3.5.1 Calculate the Clebsch-Gordan coefficients for the deuteron, treated
as a combination of a proton with spin−1/2 (ja = 1/2) and a neutron with
spin−1/2 (jb = 1/2) and no relative orbital angular momentum.

Solution In the direct-product basis (3.5.8), where J2
a , Ja3, J2

b, and Jb3 are a
complete set of commuting operators, there are four independent eigenvectors,
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11M.E. Rose, Elementary Theory of Angular Momentum (New York: John Wiley, 1957).
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corresponding to ma = ±1/2 and mb = ±1/2, respectively. Since ja + jb = 1 and
ja− jb = 0, according to (3.5.23) three states of total angular momentum j = 1 are
expected with m = 1, 0, and −1. In addition, one state of total angular momentum
j = 0 is expected.

Letting J2 act on the basis system (3.5.10) and using (3.5.13a),

J2|ja,ma〉 ⊗ |jb,mb〉 = [J2
a|ja,ma〉] ⊗ |jb,mb〉 + |ja,ma〉 ⊗ [J2

b|jb,mb〉]
+ 2[Ja3|ja,ma〉] ⊗ [Jb3|jb,mb〉] + [Ja+|ja,ma〉] ⊗ [Jb−|jb,mb〉]

+ [Ja−|ja,ma〉] ⊗ [Jb+|jb,mb〉] . (3.5.27)

From (2.3.43b) and (2.3.43c), the respective action of the raising and lowering
operator on the vector |�,m〉 is

L±|�,m〉 = h̄
√

(�∓m)〈�±m+ 1)|�,m± 1〉 , (3.5.28a)

where

L± = J±, Ja±, or Jb± . (3.5.28b)

Using (3.5.28a), (3.5.27) becomes,

J2|ja,ma〉 ⊗ |jb,mb〉 = h̄2[ja(ja + 1)+ jb〈jb + 1)+ 2mamb]|ja,ma〉 ⊗ |jb,mb〉
+ h̄2

√

(ja −ma)(ja +ma + 1)(jb +mb)〈jb −mb + 1)|ja,ma + 1〉 ⊗ |jb,mb − 1〉
+ h̄2

√

(ja +ma)(ja −ma + 1)(jb −mb)〈jb +mb + 1)|ja,ma−1〉⊗|jb,mb+1〉.
(3.5.29)

From (3.5.29) it immediately follows that
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which verifies that these two states are eigenstates of total angular momentum j = 1.
Actually this was already known before carrying out the calculation in (3.5.30).
From the preceding discussion, only spin-1 and spin-0 states are present. Using
(3.5.22), the eigenvectors |1/2, 1/2〉 ⊗ |1/2, 1/2〉 and |1/2,−1/2〉 ⊗ |1/2,−1/2〉
have m = 1 and m = −1, respectively, so these two states must be spin-1 states. In
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terms of the basis system (3.5.15) (up to a phase factor),
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, (3.5.31a)
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The only remaining problem is to find the linear combinations of the two states
with m = 0, namely |1/2, 1/2〉 ⊗ |1/2,−1/2〉 and |1/2,−1/2 ⊗ |1/2, 1/2〉 that
have j = 1 and j = 0, respectively. This calculation will be done in two different
ways. The first method is straightforward and not the least bit elegant. The second
is almost as straightforward and more elegant.

Consider a linear combination of the two states with m = 0, which is an
eigenvector with angular momentum j , where j equals either 0 or 1.
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Here α and β are constants. Allowing J2 to operate on |1/2, 1/2, j, 0〉 and
using (3.5.29),
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But since |1/2, 1/2, j, 0〉 is an eigenstate of J2 with angular momentum j ,
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Equating (3.5.33a) and (3.5.33b), and choosing j = 0, requires α = −β. To
normalize |1/2, 1/2, 0, 0〉, the choice α = −β = 1/

√
2 is made with the result,
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Repeating the above calculation with j = 1 yields the condition α = β. Again
choosing α = 1/

√
2 for purposes of normalization,
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The states (3.5.34) and (3.5.35) are orthogonal as required. Note that the eigenstates
with j = 1 are symmetric under the interchange a � b while the j = 0 state is
antisymmetric.

A more elegant method for determining the state |1/2, 1/2, 1, 0〉 is to begin with
the eigenstate |1/2, 1/2, 1, 1〉 in (3.5.31a) and then let the total angular momentum
lowering operator J− = (Ja1+ Jb1)− i(Ja2+ Jb2) = Ja− + Jb− act on it to create
the desired state |1/2, 1/2, 1, 0〉. From (3.5.28a),
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Therefore, from (3.5.36),

∣
∣
∣
∣

1

2
,

1

2
1, 0

〉

= 1

h̄
√

2
J−
∣
∣
∣
∣

1

2
,

1

2
, 1, 1

〉

= 1

h̄
√

2

{[

Ja−
∣
∣
∣
∣

1

2
,

1

2

〉]

⊗
∣
∣
∣
∣

1

2
,

1

2

〉

+
∣
∣
∣
∣

1

2
,

1

2

〉

⊗
[

Jb−
∣
∣
∣
∣

1

2
,

1

2

〉]}

= 1√
2

[∣
∣
∣
∣

1

2
,−1

2

〉

⊗
∣
∣
∣
∣

1

2
,

1

2

〉

+
∣
∣
∣
∣

1

2
,

1

2

〉

⊗
∣
∣
∣
∣

1

2
,−1

2

〉]

, (3.5.37)

which agrees with (3.5.35). The spin-0 state is just the m = 0 state that is
orthogonal to (3.5.35) and can be found accordingly. Alternatively the eigenstate
|1/2, 1/2, 1, 0〉 could have been found by applying the raising operator J+ to the
eigenstate |1/2, 1/2, 1,−1〉 in (3.5.31b).

Example 3.5.2 Calculate the matrix element M=〈1/2,1/2,1,0|Ja·Jb|1/2,1/2,1,0〉.
Solution With the aid of (3.5.13a), the matrix element can be written as
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Now |1/2, 1/2, 1, 0〉 is an eigenstate of each of the operators J2, J2
a , and J2

b as
shown in (3.5.16). Thus
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For the case of the deuteron, which was just considered, the two-dimensional
spaces spanned by |ja = 1/2,ma = 1/2〉 and |jb = 1/2,mb = 1/2〉 are
denoted, respectively, by �ja=1/2 and �jb=1/2. The direct-product space spanned
by |1/2, 1/2, j,m〉 is denoted�. To indicate that � is the direct-product space, � is
written as

� = �ja=1/2 ⊗�jb=1/2 . (3.5.38)

Because the space� contains a spin-1 subspace, denoted�1, and a spin-0 subspace,
denoted �0, the space � is expressed as

� = �ja=1/2 ⊗�jb=1/2 = �1 ⊕�0 . (3.5.39)

The above equation is called a reduction of � into a sum of irreducible angular
momentum spaces and is a special case of the general result (3.5.24).

To determine the eigenstates of total angular momentum, the basis sys-
tem (3.5.15) is expressed in terms of the basis system (3.5.10). From (3.5.18)
and (3.5.19) this expansion takes the form

|ja, jb, j,m〉 =
∑

ma,mb

C
ja jb j
ma mb m|ja,ma〉 ⊗ |jb,mb〉 . (3.5.40)

For the case ja = jb = 1/2, the Clebsch-Gordan or Wigner coefficients have
just been calculated. Comparing (3.5.40) with (3.5.31), (3.5.34) and (3.5.35),

C
1/2 1/2 1
1/2 1/2 1 = 1 , C

1/2 1/2 1
−1/2 −1/2 −1 = 1 , C

1/2 1/2 0
1/2 −1/2 0 =

1√
2

,

C
1/2 1/2 0
−1/2 1/2 0 =

−1√
2

, C
1/2 1/2 1
1/2 −1/2 0 =

1√
2

, C
1/2 1/2 1
−1/2 1/2 0 =

1√
2

.

(3.5.41)

Example 3.5.3 Calculate the Clebsch-Gordan coefficients for an electron (spin ≡
jb = 1/2) orbiting a spinless nucleus with orbital angular momentum � ≡ ja (an
integer).

Solution From Eq. (3.5.23) the two possible values of angular momentum are ja +
jb = �+ 1/2 and ja − jb = �− 1/2. From (3.5.22) all eigenstates of J3 which have
an eigenvalue m must be of the form

∣
∣
∣
∣
�,

1

2
, j,m

〉

= α

∣
∣
∣
∣
�,m− 1

2

〉

⊗
∣
∣
∣
∣

1

2
,

1

2

〉

+ β

∣
∣
∣
∣
�,m+ 1

2

〉

⊗
∣
∣
∣
∣

1

2
,−1

2

〉

. (3.5.42)



176 3 Combinations of Quantum Physical Systems

The constants α and β must now be determined such that (3.5.42) is an eigenstate
of total angular momentum with either j = �+1/2 or j = �−1/2. This, of course,
is the same procedure used to determine α and β in (3.5.32). Letting J2 operate on
(3.5.42) and using (3.5.29) to simplify the right-hand side,

J2
∣
∣
∣
∣
�,

1

2
, j,m

〉

= h̄2
{

α

[

�(�+ 1)+ 3

4
+
(

m− 1

2

)]

+ β

√

(�+m+ 1

2
)(�−m+ 1

2
)

}∣
∣
∣
∣
�,m− 1

2

〉

⊗
∣
∣
∣
∣

1

2
,

1

2

〉

+ h̄2
{

β

[

�(�+ 1)+ 3

4
−
(

m+ 1

2

)]

+ α

√

(�−m+ 1

2
)(�+m+ 1

2
)

}∣
∣
∣
∣
�,m+ 1

2

〉

⊗
∣
∣
∣
∣

1

2
,−1

2

〉

= h̄2j (j + 1)

[

α

∣
∣
∣
∣
�,m− 1

2

〉

⊗
∣
∣
∣
∣

1

2
,

1

2

〉

+ β

∣
∣
∣
∣
�,m+ 1

2

〉

⊗
∣
∣
∣
∣

1

2
,−1

2

〉]

. (3.5.43)

Setting j = � + 1/2 in (3.5.43) and requiring the coefficients of |�,m − 1/2) ⊗
|1/2, 1/2〉 in (3.5.43) be equal, yields the result

α = β

√

�+m+ 1/2

�−m+ 1/2
. (3.5.44)

The same relation is obtained by requiring the coefficients of |�,m + 1/2〉 ⊗
|1/2,−1/2〉 be equal. Normalizing the state such that α2 + β2 = 1 leads to the
final result,

∣
∣
∣
∣
�,

1

2
, �+ 1

2
,m

〉

=
√

�+m+ 1/2

2�+ 1

∣
∣
∣
∣
�,m− 1

2

〉

⊗
∣
∣
∣
∣

1

2
,

1

2

〉

+
√

�−m+ 1/2

2�+ 1

∣
∣
∣
∣
�,m+ 1

2

〉

⊗
∣
∣
∣
∣

1

2
,−1

2

〉

. (3.5.45)

The state |�, 1/2, � − 1/2,m〉 could be obtained by repeating the above procedure
after setting j = �− 1/2. But |�, 1/2, �− 1/2,m〉 is the state with 3-component of
angular momentum equal to m that is orthogonal to |�, 1/2, �+ 1/2,m〉. Therefore,

∣
∣
∣
∣
�,

1

2
, �− 1

2
,m

〉

= −
√

�−m+ 1/2

2�+ 1

∣
∣
∣
∣
�,m− 1

2

〉

⊗
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∣
∣
∣

1

2
,

1

2

〉

+
√

�+m+ 1/2

2�+ 1

∣
∣
∣
∣
l,m+ 1

2

〉

⊗
∣
∣
∣
∣

1

2
,−1

2

〉

. (3.5.46)
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Convenient choices for arbitrary phases have been made in both (3.5.45) and
(3.5.46). For example, the minus sign preceding the first term in (3.5.46) could have
appeared in front of the second term instead. In the above derivation � has never
been required to be an integer. Thus, if � is replaced by j in expressions (3.5.45)
and (3.5.46), both equations are true for either integer or half integer values of j .

The Clebsch-Gordan coefficients calculated in this example are given in
Table 3.4.

Employing a procedure similar to that used in constructing Table 3.4, Clebsch-
Gordan coefficients can be calculated for arbitrary ja and jb = 1. The results are
tabulated in Table 3.5.

Having calculated the Clebsch-Gordan coefficients for two specific, simple cases,
ja = 1/2, jb = 1/2 and ja = �, jb = 1/2, Clebsch-Gordan coefficients will
now be calculated recursively for arbitrary values of ja,ma and jb,mb using two
expressions for the matrix element 〈ja,ma, jb,mb|J±|ja, jb, j,m〉. Letting J± act
to the right and using (3.5.28a),

〈ja,ma, jb,mb|J±|ja, jb, j,m〉 =
h̄
√

(j ∓m)(j ±m+ 1) 〈ja,ma, jb,mb|ja, jb, j,m± 1〉 .
(3.5.47a)

Since J
†
± = J∓ = Ja∓ + Jb∓ , when J± acts to the left,

〈ja,ma, jb,mb|J±|ja, jb, j,m〉 = ((Ja∓ + Jb∓)|ja,ma, jb,mb〉 , |ja, jb, j,m〉) .

The second expression for the matrix element is then obtained by again using
Eq. (3.5.28a) on page 172:

= h̄
√

(ja ±ma)(ja ∓ma + 1) 〈ja,ma ∓ 1, jb,mb|ja, jb, j,m〉
+ h̄

√

(jb ±mb)(jb ∓mb + 1) 〈ja,ma, jb,mb ∓ 1|ja, jb, j,m〉 . (3.5.47b)

Table 3.4 The
Clebsch-Gordan coefficients

C
ja=� jb= 1

2 j

m−mb mb m

mb = 1
2 mb = − 1

2

j = �+ 1
2

√
�+m+1/2

2�+1

√
�−m+1/2

2�+1

j = �− 1
2 −

√
�−m+1/2

2�+1

√
�+m+1/2

2�+1

Table 3.5 The Clebsch-Gordan coefficients C
ja jb=1 j
m−mb mb m

mb = 1 mb = 0 mb = −1

j = ja + 1
√

(ja+m)(ja+m+1)
(2ja+1)(2ja+2)

√
(ja−m+1)(ja+m+1)

(2ja+1)(ja+1)

√
(ja−m)(ja−m+1)
(2ja+1)(2ja+2)

j = ja −
√

(ja+m)(ja−m+1)
2ja(ja+1)

m√
ja(ja+1)

√
(ja−m)(ja+m+1)

2ja(ja+1)

j = ja − 1
√

(ja−m)(ja−m+1)
2ja(2ja+1)

−
√

(ja−m)(ja+m)
ja(2ja+1)

√
(ja+m+1)(ja+m)

2ja(2ja+1)
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The Clebsch-Gordan coefficients 〈ja,ma, jb,mb|ja, jb, j,m = j 〉 are calculated
first by taking m = j in (3.5.47) and calculating the matrix element of J+. The
right-hand side of (3.5.47a) vanishes, and (3.5.47b) becomes

〈ja,ma − 1, jb,mb|ja, jb, j, j 〉

= −
[

(jb +mb)(jb −mb + 1)

(ja +ma)(ja −ma + 1)

] 1
2 〈ja,ma, jb,mb − 1|ja, jb, j, j, 〉 .

(3.5.48)

From (3.5.22) it follows that

m = ma +mb − 1 = j . (3.5.49)

With the aid of (3.5.49), mb can be eliminated from (3.5.48),

〈ja,ma − 1, jb, j −ma + 1|ja, jb, j, j 〉

= −
[
(jb + j −ma + 1)(jb − j +ma)

(ja +ma)(ja −ma + 1)

] 1
2 〈ja,ma, jb, j −ma |ja, jb, j, j 〉 .

(3.5.50)

Starting with ma = ja in (3.5.50), all Clebsch-Gordan coefficients 〈ja,ma, jb,

mb|ja, jb, j, j 〉 can be successively calculated in terms of 〈ja, ja, jb, j − ja|ja,

jb, j, j 〉:
〈ja, ja − 1, jb, j − ja + 1|ja, jb, j, j 〉

= −
[
(jb + j − ja + 1)(jb − j + ja)

(2ja)(1)

] 1
2 〈ja, ja, jb, j − ja|ja, jb, j, j 〉 .

(3.5.51)

Taking ma = ja − 1 in (3.5.50),

〈ja, ja − 2, jb, j − ja + 2|ja, jb, j, j 〉

= −
[

(jb + j − ja + 2)(jb − j + ja − 1)

(2ja − 1)(2)

] 1
2 〈ja, ja−1, jb, j−ja+1|ja, jb, j, j 〉 .

(3.5.52)
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Substituting the matrix element on the left-hand side of (3.5.51) into the right-hand
side of (3.5.52)

〈ja, ja − 2, jb, j − ja + 2|ja, jb, j, j 〉

=
[ [(jb + j − ja + 1)(jb + j − ja + 2)][(jb − j + ja)(jb − j + ja − 1)]

[(2ja)(2ja − 1)](1 · 2)

] 1
2

× 〈ja, ja, jb, j − ja|ja, jb, j, j 〉 . (3.5.53)

Matrix elements have now been calculated in terms of 〈ja, ja, jb, j−ja|ja, jb, j, j 〉
for ma = ja − 1 in (3.5.51) and for ma = ja − 2 in (3.5.53). When ma = ja − n,
where n is an integer, the above equation immediately generalizes to

〈ja, ja − n, jb, j − ja + n|ja, jb, j, j 〉

= (−1)n
[
(jb + j − ja + 1)(jb + j − ja + 2) · · · (jb + j − ja + n)

(2ja)(2ja − 1) · · · (2ja + 1− n)

× (jb − j + ja)(jb − j + ja − 1) · · · (jb − j + ja + 1− n)

1 · 2 · · ·n
] 1

2

× 〈ja, ja, jb, j − ja|ja, jb, j, j 〉

= (−1)n
[
(jb + j − ja + n)!

(jb + j − ja)!
(2ja − n)!

(2ja)!
(jb − j + ja)!

(jb − j + ja − n)!
1

n!
] 1

2

× 〈ja, ja, jb, j − ja|ja, jb, j, j 〉 . (3.5.54)

Using ma = ja − n to eliminate n from the above equation,

〈ja,ma, jb, j −ma|ja, jb, j, j 〉

= (−1)ja−ma

[
(jb + j −ma)!(ja +ma)!(jb − j + ja)!

(jb + j − ja)!(2ja)!(jb − j +ma)!(ja −ma)!
] 1

2

× 〈ja, ja, jb, j − ja|ja, jb, j, j 〉 . (3.5.55)

The Clebsch-Gordan coefficient 〈ja, ja, jb, j − ja|ja, jb, j, j 〉 that appears on
the right hand side of (3.5.55) can be calculated from the orthogonality relation
(3.5.20). Taking m′a = ma , m′b = mb, m = j and noting that ma +mb = j , which
implies that mb = j −ma , (3.5.20) becomes

1 =
ja∑

ma=−ja

|〈ja,ma, jb, j −ma |ja, jb, j, j 〉|2 . (3.5.56)
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Substituting the expression (3.5.55) for the matrix element
〈ja,ma, jb, j −ma|ja, jb, j, j, 〉 into (3.5.56),

1 = (jb − j + ja)!
(jb + j − ja)!〈2ja)! |〈ja, ja, jb, j − ja|ja, jb, j, j 〉|2

×
ja∑

ma=−ja

(jb + j −ma)!(ja +ma)!
(jb − j +ma)!(ja −ma)! . (3.5.57)

Making use of the equality,12

ja∑

ma=−ja

(jb + j −ma)!(ja +ma)!
(jb − j +ma)!(ja −ma)! =

(ja + jb + j + 1)!(−ja + jb + j)!(ja − jb + j)!
(2j + 1)!(ja + jb − j)! ,

(3.5.58)

the following expression is obtained for the matrix element 〈ja, ja, jb, j − ja|ja,

jb, j, j 〉;

〈ja, ja, jb, j − ja|ja, jb, j, j 〉 =
[

(2ja)!(2j + 1)!
(ja + jb + j + 1)!(ja − jb + j)!

] 1
2

,

(3.5.59)

where a choice in phase has been made when taking the square root.

Example 3.5.4 Calculate the Clebsch-Gordan coefficient

C
� 1/2 �−1/2
� −1/2 �−1/2 = 〈�, �,

1

2
,−1

2
|�, 1

2
, �− 1

2
, �− 1

2
〉

from (3.5.59) and verify that the result agrees with the expression given in Table 3.4
on page 177.

Solution Taking ja = �, jb = 1
2 , j = �− 1

2 , from (3.5.59)

〈�, �, 1

2
,−1

2
|�, 1

2
, �− 1

2
, �− 1

2
〉 =

√

(2�)!(2�)!
(2�+ 1)!(2�− 1)! =

√

2�

2�+ 1
,

12A. R. Edmonds, Angular Momentum in Quantum Mechanics. Princeton University Press,
Princeton, 1957.
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which agrees with the Clebsch-Gordan coefficient in Table 3.4 when j = � − 1
2 ,

mb = − 1
2 and m = �− 1

2 .

Substituting the expression for the matrix element given in (3.5.59) into the right
hand side of (3.5.55),

〈ja,ma, jb, j −ma |ja, jb, j, j 〉 = (−1)ja−ma

×
[

(2j + 1)!(jb + ja − j)!(jb + j −ma)!(ja +ma)!
(j + ja + jb + 1)!(j + ja − jb)!(j − ja + jb)!(jb − j +ma)!(ja −ma)!

] 1
2

.

(3.5.60)

The above equation gives all Clebsch-Gordan coefficients when m = j .

Example 3.5.5 Calculate the Clebsch-Gordan coefficient

C
� 1/2 �−1/2
�−1 1/2 �−1/2 = 〈�, �− 1,

1

2
,

1

2
|�, 1

2
, �− 1

2
, �− 1

2
〉

from (3.5.60) and verify that the result agrees with the expression given in Table 3.4.

Solution Taking ja = �,ma = �− 1, jb = 1
2 , j = �− 1

2 , from (3.5.60)

〈�, �−1,
1

2
,

1

2
|�, 1

2
, �− 1

2
, �− 1

2
〉 = −

[
(2�)!(1)!(1)!(2� − 1)!

(2�+ 1)!(2� − 1)!(0)!(0)!(1)!
] 1

2 = − 1√
2�+ 1

,

which agrees with the expression for the Clebsch-Gordan coefficient in Table 3.4
when j = �− 1

2 ,mb = − 1
2 and m = �− 1

2 .

Formulas for Clebsch-Gordan coefficients when m �= j can be calculated using
the lowering operator J_. Equating (3.5.47a) and (3.5.47b) for the matrix element
of J_ when m = j ,

〈ja,ma, jb,mb|j, j − 1〉 =
√

(ja −ma)(ja +ma + 1)

2j
〈ja,ma + 1, jb,mb|ja, jb, j, j〉

+
√

jb −mb)(jb +mb + 1)

2j
〈ja,ma, jb,mb + 1|ja, jb, j, j〉 . (3.5.61)

The above equation expresses Clebsch-Gordan coefficients with m = j−1 in terms
of Clebsch-Gordan coefficients with m = j , which can be calculated from (3.5.60).
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Repeating this process with m = j − 1, j − 2, · · ·, the following general formula
for the Clebsch-Gordan coefficients is obtained13:

C
ja jb j
ma mb m ≡ 〈ja,ma, jb,mb|ja, jb, j,m〉

= δma+mb,m

[
(2j + 1)(ja + jb − j)!(ja − jb + j)!(−ja + jb + j)!

(ja + jb + j + 1)!
] 1

2

× [(ja +ma)!(ja −ma)!(jb +mb)!(jb −mb)!(j +m)!(j −m)!] 1
2

×
∑

n

{(−1)n/[n!(ja + jb − j − n)!(ja −ma − n)!(jb +mb − n)!

× (j − jb +ma + n)!(j − ja −mb + n)!]} (3.5.62)

The summation n = 0, 1, 2, · · ·, N ranges over all integer values for which the
argument of every factorial involving n is nonnegative.

Example 3.5.6 Calculate the Clebsch-Gordan coefficient

C
� 1/2 �+1/2
m−1/2 1/2 m = (�,m− 1

2
,

1

2
,

1

2
|�, 1

2
, �+ 1

2
,m〉

from (3.5.62).

Solution Taking ja = �,ma = m− 1
2 , jb = 1

2 ,mb = 1
2 , j = �+ 1

2 , it follows that
the term (ja + jb − j − n) in the sum in (3.5.62) equals (−n)!. Thus the the sum is
only over n = 0.

〈�,m− 1

2
,

1

2
,

1

2
|�, 1

2
, �+ 1

2
,m〉 =

[
(2�+ 2)(0)!(2�)!(1)!

(2�+ 2)!
] 1

2

× [(�+m− 1

2
)!(�−m+ 1

2
)!(1)!(0)!(�+m+ 1

2
)!(�−m+ 1

2
)!] 1

2

× (−1)0

(0)!(−0)!(�−m+ 1
2 !(1)!(�+m− 1

2 )!(0)! =
√

�+m+ 1
2

2�+ 1
,

which agrees with the expression for the Clebsch-Gordan coefficient in Table 3.4.

It is frequently more convenient to use Wigner 3-j symbols instead of Clebsch-
Gordan coefficients since 3-j symbols display symmetry properties more clearly.
The 3-j symbol is defined by

(

ja jb jc

ma mb mc

)

≡ (−1)ja−jb−mc

√
2jc + 1

〈ja,ma, jb,mb|ja, jb, jc,−mc〉 . (3.5.63)

13Ibid, pp. 44, 45.
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Its symmetry properties are given by

(

ja jb jc

ma mb mc

)

=
(

jb jc ja

mb mc ma

)

=
(

jc ja jb

mc ma mb

)

, (3.5.64a)

(−1)ja+jb+jc

(

ja jb jc

ma mb mc

)

=
(

jb ja jc

mb ma mc

)

=
(

ja jc jb

ma mc mb

)

=
(

jc jb ja

mc mb ma

)

, (3.5.64b)

and

(

ja jb jc

ma mb mc

)

= (−1)ja+jb+jc

(

ja jb jc

−ma −mb −mc

)

. (3.5.64c)

3.6 Tensor Operators and the Wigner-Eckart Theorem

Angular momentum was considered in some detail in Chap. 2, and Clebsch-
Gordan coefficients were discussed in Sect. 3.5. Here a more general class of
operators, called tensor operators,14 are defined by their relationship with the
angular-momentum operators. The simplest example of such an operator is a scalar
operator defined to be any operator S satisfying

[Ji, S] = 0 . (3.6.1)

Another example is any set of three operators Vi(i = 1, 2, 3) that satisfy

[Ji, Vj ] = ih̄εijkVk , i, j, k = 1, 2, 3 . (3.6.2)

Such a set of operators is called a vector operator or regular tensor operator. Note
that the angular momentum itself is a vector operator. Scalar and vector operators
are tensor operators of rank 0 and 1, respectively.

Rather than using the “Cartesian” components Vi , it is more convenient to use
“spherical” components V0 and V±1 defined by

V0 = V3 , V±1 = ∓1√
2
(V1 ± iV2) . (3.6.3)

14Here only “irreducible tensor operators” are considered.
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When written in terms of spherical components, (3.6.2) becomes

[Jκ, Vκ ] = 0 , κ = −1, 0,+1 , (3.6.4a)

[J±, V∓1] =
√

2h̄V0 , [J±, V0] =
√

2h̄V±1 , [J0, Vκ ] = κh̄Vκ . (3.6.4b)

In general, when written in spherical components, a tensor operator T
(j)
κ (κ =

−j, −j + 1, . . . , +j) of rank j is a set of 2j + 1 operators15 that satisfy

[J0 , T (j)
κ ] = κh̄ T (j)

κ , (3.6.5a)

[J± , T (j)
κ ] = √

j (j + 1)− κ(κ ± 1) h̄ T
(j)
κ±1 . (3.6.5b)

As can be checked (Problem 3.32), using the Clebsch-Gordan coefficients C
j 1 j
κ μ κ+μ

listed in Table 3.5 on page 177, the above equation can be written in the following
compact form:

[Jμ, T (j)
κ ] = √

j (j + 1) C
j 1 j
κ μ κ+μ h̄ T

(j)
κ+μ (3.6.6)

The matrix elements of tensor operators have an important property which is
expressed by the Wigner-Eckart theorem: Let T

(J )
κ be a tensor operator. The matrix

element of T
(J )
κ between angular momentum eigenstates may be written as

〈j ′,m′|T (J )
κ |j,m〉 = C

j J j ′
m κ m′ 〈j ′‖T (J )‖j 〉 , (3.6.7)

where C
j J j ′
m κ m′ is a Clebsch-Gordan coefficient. The quantity 〈j ′‖T (J )‖j 〉 defined

by (3.6.7) is called the reduced matrix element of the tensor operator and depends
on j ′, j , J , and the nature of the tensor operator T

(J )
κ , but it does not depend on m,

m′, or κ .16 This theorem will not be proven here since the proof is pure mathematics
and does not give any additional insight into the physics.

A particular consequence of the Wigner-Eckart theorem (3.6.7) is

〈j ′,m′|T (J )
κ |j,m〉 = 0 if m′ �= κ +m or j ′ �= J + j, J + j − 1, . . . , |J − j | ,

(3.6.8)

15In labeling the components of vector operators, spherical components are denoted by Greek
letters and Cartesian components by Latin letters. This notation is not used for the general tensor
operator.
16In some textbooks, a constant factor or function of j appears explicitly in the Wigner-Eckart
theorem. In the notation used here these factors have been absorbed into the reduced matrix
element.
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which follows immediately from the properties of the Clebsch-Gordan coefficients
(3.5.25). For a scalar operator S, (3.6.7) becomes

〈j ′,m′|S|j,m〉 = δm′mδj ′j 〈j‖S‖j 〉 . (3.6.9)

The above equation reveals that S cannot change the angular-momentum quantum
number, an expected result.

Example 3.6.1 Calculate the reduced matrix element 〈j ′‖T (J )‖j 〉 for T
(J )
κ=0 = J0.

Solution For the angular-momentum operators themselves, (3.6.7) gives

〈j ′,m′|J0|j,m〉 = C
j 1 j ′
m 0 m′ 〈j ′‖J‖j 〉 . (3.6.10)

The left-hand side of (3.6.7) is evaluated using (2.3.43),

〈j ′,m′|J0|j,m〉 = h̄ m δj ′,j δm′,m , (3.6.11a)

and the right-hand side of (3.6.7) is simplified using the explicit expressions for the
Clebsch-Gordan coefficient given in Table 3.5 on page 177:

〈j ′,m′|J0|j,m〉 = m√
j (j + 1)

〈j ′‖J‖j 〉 δm′,m . (3.6.11b)

Equating (3.6.11a) and (3.6.11b) ,

〈j ′‖J‖j 〉 = δj ′j h̄
√

j (j + 1) . (3.6.12)

Identical expressions for 〈j ′‖J‖j 〉 are, of course, obtained when T
(J )
κ=±1 = J±1

(Problem 3.33).

If, in addition to j and m, there are other quantum numbers, say η =
a1 , a2 , . . . .., aN , then in general the reduced matrix element will also depend on
the quantum numbers η. That is,

〈η′, j ′,m′|T (J )
κ |η, j,m〉 = C

j J j ′
m κ m′ 〈η′, j ′‖T (J )‖η, j 〉 . (3.6.13)

The additional observables ηop = A1, A2, . . . , AN whose respective eigenvalues
are the quantum numbers η = a1, a2, . . . , aN must have the property that
[ηop, Ji] = 0 or [ηop, SO(3)Ji ] = 0. It should be emphasized that the Wigner-
Eckart theorem is both a theorem and a definition. It is a theorem because (3.6.7)
reveals that the matrix element of T

(J )
κ can be factored so that the dependence on m,

m′, and κ is contained entirely in the Clebsch-Gordan coefficient. It is a definition
because (3.6.7) defines the reduced matrix elements.

The Wigner-Eckart theorem has become one of the more important tools for
the understanding of physics. Equation (3.6.7) is the Wigner-Eckart theorem for



186 3 Combinations of Quantum Physical Systems

the rotation group, which is connected with the algebra of angular momenta Ji as
an algebra of observables. Many physical systems have an (enveloping) algebra of
a group as a subalgebra of the algebra of observables, and they have observables
that are tensor operators with respect to this group. For those observables, a
generalization of the the Wigner-Eckart theorem (3.6.7) is valid.

The Wigner-Eckart theorem expresses the matrix elements of the tensor opera-
tors, which are directly connected with the numbers measured in an experiment, in
terms of Clebsch-Gordan coefficients and reduced matrix elements. The Clebsch-
Gordan coefficients are known mathematical quantities and are calculated from the
properties of the group. The reduced matrix elements are physical parameters with
values that have to be obtained from the experimental data. For an observable such
as Qj that obeys the additional relation (2.4.1c), the reduced matrix elements can
be reduced to a still smaller number of parameters. The importance of the Wigner-
Eckart theorem is that it allows the large number of experimentally observable
matrix elements to be expressed in terms of the reduced matrix elements, of a much
smaller number of more fundamental quantities. Often all that is known about an
observable is that it is a tensor operator. The Wigner-Eckart theorem then is the
only tool at hand.

If |j,m〉 is a basis in the space in which Vκ is a general vector operator, then
Vκ |j,m〉 can be expanded with respect to |j,m〉:

Vκ |j,m〉 =
∑

j ′,m′
|j ′,m′〉〈j ′,m′|Vκ |j,m〉 (3.6.14)

According to the Wigner-Eckart theorem (3.6.7),

Vκ |j,m〉 =
∑

j ′,m′
|j ′,m′〉Cj 1 j ′

m κ m′ 〈j ′‖V ‖j 〉 . (3.6.15)

If the c. s. c. o. contains, in addition to J2 and J3, N other operators A1, . . . , AN

with respective spectra η = (a1, a2, . . . , aN), then the basis is |η, j,m〉. Instead of
(3.6.15) one has, according to (3.6.13),

Vκ |η, j,m〉 =
∑

η′j ′m′
|η′, j ′,m′)Cj 1 j ′

m κ m′ 〈η′, j ′‖V ‖η, j 〉 . (3.6.16)

In the remainder of this section the additional quantum numbers η will be sup-
pressed, but it should be understood that whenever additional quantum numbers η

are needed, the reduced matrix elements will depend on these quantum numbers and
a summation over η′ is implied.
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According to (3.6.8), the only non-vanishing terms in (3.6.15) are those for which
j ′ = j + 1 , j, j − 1 and m′ = m+ κ :

Vκ |j,m〉 = |j−1,m+κ〉Cj 1 j−1
m κ m+κ 〈j−1‖V ‖j 〉+|j,m+κ〉Cj 1 j

m κ m+κ 〈j‖V ‖j 〉
+ |j + 1,m+ κ〉Cj 1 j+1

m κ m+κ 〈j + 1‖V ‖j 〉 . (3.6.17)

This is the most general form possible for the action of a vector operator. According
to (3.6.17) any vector operator can be completely specified by three reduced matrix
elements that in general may depend on η, η′. Actually, as shall be shown below,
only two quantities are needed to determine a vector operator.

Using the Clebsch-Gordan coefficients in Table 3.5 on page 177, (3.6.17) can be
written explicitly. For the 0-component,

V0|j,m〉 = |j − 1,m〉
(

−
√

(j −m)(j +m)

j (2j + 1)

)

〈j − 1‖V ‖j 〉

+ |j,m〉
(

m√
j (j + 1)

)

〈j‖V ‖j 〉

+ |j + 1,m〉
(√

(j −m+ 1)(j +m+ 1)

(2j + 1)(j + 1)

)

〈j + 1‖V ‖j 〉 , (3.6.18)

Defining cj , aj , and dj ,

cj = −〈j − 1‖V ‖j 〉√
j (2j + 1)

, (3.6.19a)

aj = − 〈j‖V ‖j 〉√
j (j + 1)

, (3.6.19b)

dj = − 〈j + 1‖V ‖j 〉√
(2j + 1)(j + 1)

, (3.6.19c)

(3.6.18) can be rewritten as

V0|j,m〉 =
√

j2 −m2cj |j − 1,m〉 −maj |j,m〉

−
√

(j + 1)2 −m2dj |j + 1,m〉 . (3.6.20)

The equations for V±1|j,m〉 can similarly be rewritten as

V+1|j,m〉 = −|j − 1,m+ 1〉√(j −m− 1)(j −m)/2 cj

+ |j,m+ 1〉√(j +m+ 1)(j −m)/2 aj

− |j + 1,m+ 1〉√(j +m+ 1)(j +m+ 2)/2 dj , (3.6.21)
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and

V−1|j,m〉 = −|j − 1,m− 1〉√(j +m)(j +m− 1)/2 cj

− |j,m− 1〉√(j −m+ 1)(j +m)/2 aj

− |j + 1,m− 1〉√(j −m+ 1)(j −m+ 2)/2 dj . (3.6.22)

Equations (3.6.20)–(3.6.22) reveal that a vector operator is completely determined
by the three functions cj , aj , and dj that depend on the discrete parameter j and
may in general depend on η′ and η. In the mathematical note that follows, it will
be shown that it is possible to choose a different angular momentum basis in such a
way that only two functions are required.

3.6.1 Mathematical Note

A new angular momentum basis

|hj
m〉 = ξ(j)|j,m〉 , (3.6.23)

is defined where ξ(j) is a complex number. The action of the angular momentum
operators on the basis |hi

m〉 is identical to their action (2.3.43) on the basis |j,m〉. In

general, the |hj
m〉 are not normalized unless

|ξ(j)| = 1 . (3.6.24)

Multiplying (3.6.20) by ξ(j), multiplying and dividing the first term on the right-
hand side by ξ(j −1), and multiplying and dividing the third term on the right-hand
side by ξ(j + 1),

V0|hj
m〉 =

√

j2 −m2cj
ξ(j)

ξ〈j − 1)
|hj−1

m 〉 −maj |hj
m〉

−
√

(j + 1)2 −m2dj
ξ(j)

ξ〈j + 1)
|hj+1

m 〉 . (3.6.25)

Defining

Aj ≡ aj , (3.6.26a)

Cj ≡ cj

ξ(j)

ξ(j − 1)
, (3.6.26b)

Dj ≡ dj

ξ(j)

ξ(j + 1)
, (3.6.26c)
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the complex number ξ(j) is chosen so that Cj = Dj−1:

cj
ξ(j)

ξ(j − 1)
= ξ(j − 1)

ξ(j)
dj−1 , (3.6.27a)

or, equivalently,

ξ2(j) = ξ2(j − 1)
dj−1

cj

. (3.6.27b)

Suppose j0 is the smallest value of j in the space so that

〈j0 − 1‖V ‖j0〉 = 0 . (3.6.28)

Then from (3.6.19) it follows that cj = 0 and dj−1 = 0 for j < j0. By direct
substitution it is easy to see that (3.6.27b) is satisfied if

ξ(j) =
√

ξ2(j0)
dj0

cj0+1

dj0+1

cj0+2
· · · dj−1

cj

. (3.6.29)

Equation (3.6.25) can now be rewritten as

V0|hj
m〉 =

√

j2 −m2Cj |hj−1
m 〉 −mAj |hj

m〉 −
√

(j + 1)2 −m2Cj+1|hj+1
m 〉 .

(3.6.30)

Using (3.6.27a) and (3.6.29) to express dj−1 in terms of cj , the action of every
vector operator acting on an angular momentum basis system can be written in the
form (3.6.20) to (3.6.22) where the aj and cj are functions of j . It should be noted,
however, that in general it is possible have Cj = Dj−1 for only one vector operator
Vκ at a time. If two different vector operators are involved in one problem and the
basis has been chosen so that for the reduced matrix element of one of them Cj =
Dj−1, then in this basis, the other or any additional vector operator is expressed in
terms of three independent reduced matrix elements.

So far the only condition placed on Vκ is that it be a vector operator. As a
consequence the reduced matrix elements cj and aj are arbitrary functions of j

that cannot be calculated: they can only be determined phenomenologically from
the experimental value of one particular matrix element of one component of Vκ .
Specifically, cj can be obtained from 〈j − 1, j |V0|j, j 〉 and aj from 〈j, j |V0|j, j 〉.
Using the Clebsch-Gordan coefficients all other matrix elements 〈j,m|V |j,m〉 for
m = −j, −j + 1, . . . , j and κ = 0,+1,−1 can then be calculated from these two
experimental values.

If Vκ is required to obey additional conditions, more specific information about
the cj and aj is obtained. For example, as was shown in Example 3.6.1 on page 185,
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the reduced matrix elements were completely determined when the vector operators
were the angular momentum operators.

Often the vector operators have a specified hermiticity property. They are either
hermitian, defined by

V +0 = V0 , V +±1 = −V∓1 , (3.6.31)

or they are skew-hermitian, defined by

V +0 = −V0 , V+±1 = +V∓1 . (3.6.32)

It is easy to see (Problem 3.36) that for Hermetian Vκ the functions cj are purely
imaginary, (cj )

∗ = −cj , and the functions aj are real, (aj )
∗ = aj . For skew-

Hermetian Vκ one has (cj )
∗ = cj and (aj )

∗ = −aj .

3.7 Summary

If a quantum particle has no structure and is truly a point object, it is fundamental
and is called an elementary particle. For particles with a finite spatial extent, whether
they are thought of as being fundamental or composite depends upon the energy
used to study them.

When two mass points interact via a potential that depends only upon the relative
positions of the mass points, the original two-body Hamiltonian Ĥ ,

Ĥ = P2
1

2m1
+ P2

2

2m2
+ U(Q2 −Q1) .

can be rewritten as a sum of two, one-body Hamiltonians by rewriting the original
Hamiltonian in terms of the relative position operator Q, the relative momentum
operator P and the center-of-mass momentum operator PCM where

Q = Q2 −Q1 ,

P = m1P2 −m2P1

M
,

PCM = P1 + P2 .

In terms of these new operators, the original Hamiltonian Ĥ takes the form

H = P2
CM

2M
+ P2

2μ
+ U(Q) ,
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The first term is the Hamiltonian of a free particle with mass M and the sum of the
second and third terms is the Hamiltonian of a particle with mass μ in an external
potential U(Q). By changing to the center-of-mass and relative variables, the two-
body Hamiltonian is reduced to two, one-body Hamiltonians, one of which is trivial
to solve.

The basic postulate for combining quantum physical systems is as follows: Let
one physical system be described by a set of operators {AΦ} in the space Φ, and
a second physical system be described by a set of operators {BΨ } in the space Ψ .
The direct-product space Φ ⊗ Ψ is the space of physical states of the combination
of the two systems. The observables C for the combined system are operators in the
direct-product space and are of the form

C =
∑

aiA
i
Φ ⊗ Bi

Ψ , ai ∈ C .

Observables in the first system alone are given by AΦ ⊗ 1, and observables in the
second system alone are given by 1⊗ BΨ .

A set of commuting, hermitian operators whose eigenvalues completely specify
a (generalized) basis for a system is called a complete set of commuting operators or
a complete set of commuting observables for the system. When studying a quantum
physical system, the two most important questions are as follows: (1) What is a
complete set of commuting operators for the system? (2) What additional operators
must be adjoined to the complete set of commuting operators and what are the
algebraic relations among the various operators? For a quantum physical system
with a classical analogue, the number of operators in a complete set of commuting
observables equals the number of degrees of freedom in the corresponding classical
system.

Understanding of a complex physical system can often be achieved by thinking
of it as a combination of two or more elementary physical systems. In quantum
mechanics, complex physical system can be understood atomistically (what the
complex system is made of) or it in terms of collective motions (what motions the
complex system can perform).

A diatomic molecule, which is an example of a vibrating rotator when observed
at sufficiently high energies, is an instructive example for the combination of two
quantum physical systems. When a diatomic molecule is studied with energies �
10−2 eV, only rotational states are excited and the molecule can be described as a
rotator with a Hamiltonian

Hrotator = L2

2I
.

When the energy is increased to about 0.1 eV, the molecule begins vibrating with
the result that new energy levels are observed, each of which contains an entire
rotational band. The diatomic molecule can now be described as a vibrating rotator
using a direct-product space. As a first approximation the Hamiltonian H is

H = Hoscillator⊗ I + I ⊗Hrotator ,
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where

Hoscillator = P2

2μ
+ 1

2
kQ2 .

When the diatomic molecule is in a state of higher vibrational energy, it oscillates
with a larger amplitude and consequently has a larger moment of inertia, implying
that the energy associated with oscillations affects the energy associated with
rotation. A simple term Hint representing interaction between vibrational and
rotational degrees of freedom is

Hint = gHoscillator⊗Hrotator ,

where g is a constant. The Hamiltonian

H = Hoscillator⊗ I + I ⊗Hrotator + gHoscillator⊗Hrotator .

describes the energy spectra of various diatomic molecules quite well. However,
agreement with empirical data can be further enhanced by including anharmonic
effects of the oscillator and the influence of centripetal forces.

When two physical systems with respective angular momenta ja and jb are
combined, the possible values of total angular momentum j are

j = ja + jb, ja + jb − 1, ja + jb − 2, ..., |ja − jb| .

The combined rotational motion is described by the direct-product space

� = �ja ⊗�jb ,

that is spanned by the set of direct-product vectors

|ja,ma〉 ⊗ |jb,mb〉 .

Linear combinations of the above direct-product vectors yield new vectors that
are eigenstates with total angular momentum j and 3-component of total angular
momentum m,

|ja, jb, j,m〉 =
∑

ma,mb

C
ja jb j
ma mb m |ja,ma〉 ⊗ |jb,mb〉 .

The transition coefficients in the above formula are called Clebsch-Gordan or
Wigner coefficients.
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A tensor operator T
(j)
κ (κ = −j, −j + 1, . . . , +j) of rank j is a set of 2j + 1

operators that satisfy

[Jμ, T (j)
κ ] = √

j (j + 1) C
j 1 j
κ μ κ+μ h̄ T

(j)
κ+μ . (3.7.1)

The Wigner-Eckart theorem states that the matrix element of T
(J )
κ between angular

momentum eigenstates may be written as

〈j ′,m′|T (J )
κ |j,m〉 = C

j J j ′
m κ m′ 〈j ′‖T (J )‖j 〉 . (3.7.2)

The dependence of the matrix elements on m, m′, and κ is contained entirely in the
known Clebsch-Gordan coefficients. The quantity 〈j ′‖T (J )‖j 〉 defined by (3.7.2)
is called the reduced matrix element of the tensor operator; often can only be
determined experimentally; and depends only on the nature of the tensor operator
T

(J )
κ , j ′, j , and J .

Problems

For Sect. 3.2

3.1 Derive (3.2.36) using the Heisenberg commutation relations (3.2.35).

3.2 Verify that when the Hamiltonian (3.2.24) is rewritten in terms of PCM, P and
Q it is given by (3.2.37).

3.3 Show that

[Li, P2] = 0 ,

where the Li are defined by (2.2.5).

3.4 Show that

[Li, Q2] = 0 ,

where the Li are defined by (2.2.5).

3.5 Consider a composite system with a Hamiltonian

H = P2
1

2m
+ P2

2

2m
+ 1

2
k
(

Q2
1 +Q2

2

)

+ λQ1Q2 .

Classically this system corresponds to two identical harmonic oscillators in one-
dimensional space coupled by the interaction λQ1Q2.
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(a) Determine new position operators QA and QB that are linear combinations
of Q1 and Q2 and new momentum operators PA and PB that are linear
combinations of P1 and P2 such that the Hamiltonian separates and

[PA,QA] = h̄

i
1 [PB,QB ] = h̄

i
1

[PA,QB ] = 0 [PB,QA] = 0

(b) What is H in terms of these new operators?

3.6 Express the time-independent, two-body Schrödinger equation (3.2.54) in
terms of relative coordinates x = x1 − x2 and center-of-mass coordinates XCM =
(m1x1 +m2x2)/(m1 +m2).

3.7

(a) Using a procedure similar to that which lead to (3.2.54), derive the Schrödinger
equation in two-dimensional space that describes two particles with respective
charges of e and −e interacting via the Coulomb force.

(b) Rewrite the Schrödinger equation in terms of the polar variables r and φ where
x = r cos φ and y = r sin φ to derive the energy eigenvalue equation

− h̄2

2μ

[
∂2

∂r2 +
1

r

∂

∂r
+ 1

r2

∂2

∂φ2

]

〈r, φ|E,m〉 = E〈r, φ|E,m〉

that appears in Example 3.2.2 on page 134.

3.8 Beginning with the equation

L3|E,m〉 = h̄m|E,m〉 ,

where L3 ≡ Lx is given by (2.2.3a), derive the partial differential equation

h̄

i

∂

∂φ
〈r, φ|E,m〉 = h̄m〈r, φ|E,m〉 ,

where x = r cos φ and y = r sin φ.

3.9 Consider the transformation from spherical coordinates to rectangular (Carte-
sian) coordinates:

x = r sin θ cos φ , y = r sin θ sin φ , z = r cos θ .
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(a) Show that the transformation from rectangular coordinates to spherical coordi-
nates is

r =
√

x2 + y2 + z2 , φ = tan−1 y

x
, θ = sin−1

√

x2 + y2
√

x2 + y2 + z2
.

(b) Using the chain rule for differentiation,

∂

∂x
= ∂r

∂x

∂

∂r
+ ∂θ

∂x

∂

∂θ
+ ∂φ

∂x

∂

∂φ

etc., show that

∂

∂x
= sin θ cos φ

∂

∂r
+ 1

r
cos θ cos φ

∂

∂θ
− 1

r

sin φ

sin θ

∂

∂φ
,

∂

∂y
= sin θ sin θ

∂

∂r
+ 1

r
cos θ sin φ

∂

∂θ
− 1

r

cos φ

sin θ

∂

∂φ
,

∂

∂z
= cos θ

∂

∂r
− 1

r

∂

∂θ
.

(c) Show that

〈θ, φ|L2|l,m〉 = 〈θ, φ|L2
1 + L2

2 + L2
3|l, m〉

= −h̄2
[

1

sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

+ 1

sin2 θ

∂2

∂φ2

]

〈θ, φ|l,m〉 .

For Sect. 3.3

3.10 Let T , T̃ , and T ′ be tensors in the direct-product space ΦM ⊗ ΨN . Show that
the scalar product defined in (3.3.5) possesses the following properties required of
a scalar product in a linear, scalar-product space:

(a) (T , T ) ≥ 0
(b) (T , T ) = 0 iff T = 0
(c) (T , T̃ ) = (T̃ , T )∗
(d) a(T , T̃ ) = (T , aT̃ ) = (a∗T , T̃ ), a ∈ C
(e) (T ′ + T̃ , T ) = (T ′, T )+ (T̃ , T )

3.11 Let T and T̃ be tensors in the scalar-product space ΦM ⊗ ΨN . Also let AΦ ,
A′Φ , BΨ , and B ′Ψ be linear operators in the indicated linear, scalar-product spaces.
In addition, let

C = AΦ ⊗ BΨ , C′ = A′Φ ⊗ B ′Ψ
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be operators in the direct-product space. Show that the operators C and C′ possess
the following properties required of a linear operator in the direct-product space:

(a) C(T + T̃ ) = CT + CT̃

(b) C(aT ) = a(CT ), a ∈ C
(c) (C + C′)T = CT + C′T
(d) (aC)T = a(CT ), a ∈ C
(e) (C′C)T = C′(CT )

3.12 Verify Eq. (3.3.9).

3.13 Let AΦ be a linear operator in the space Φ spanned by the orthonormal vectors
φ1 and φ2. Similarly, let BΨ be a linear operator in the space Ψ spanned by the
orthonormal vectors ψ1 and ψ2. The matrix elements of AΦ and BΨ are given,
respectively, by

〈φi |AΦ |φj 〉 = aij , 〈ψi |AΦ |ψj 〉 = bij

Write the direct product basis as the column vector

χ =

⎛

⎜
⎜
⎝

φ1 ⊗ ψ1

φ1 ⊗ ψ2

φ2 ⊗ ψ1

φ2 ⊗ ψ2

⎞

⎟
⎟
⎠

and determine the 4× 4 matrix M(aij , bij ) such that

AΦ ⊗ BΨ χ = M(aij , bij ) χ .

Hint:

Aφi =
2
∑

j=1

φjaji , Bψi =
2
∑

j=1

ψjbji ,

3.14 Since a diatomic molecule can be viewed as a bound state of two mass
points, from the discussion in Sect. 3.3 it is expected that six eigenvalues would
be required to completely specify the state of a diatomic molecule. However, in
Chap. 2, Sect. 2.4, a rotating diatomic molecule was described by the basis vectors
|�,m〉, which are characterized by only two quantum numbers. Explain why the four
additional quantum numbers were not required.
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For Sect. 3.4

3.15 Calculate the average value of the moment of inertia I = μ(r0 + Q)2 for a
quantum harmonic oscillator with mass μ and energy En = h̄ω(n + 1/2).

3.16 For the HCl molecule, what is the value of the constant g that appears in
(3.4.21) and (3.4.23)?

For Sect. 3.5

3.17 If Ji = Jai + Jbi , verify the Ji satisfy the algebra of angular momentum
provided that [Jai, Jbj ]= 0 and that the Jai and Jbi independently satisfy the algebra
of angular momentum.

3.18 Derive the expression for J2 given in (3.5.13a).

3.19 Show that the eigenvector |ja,ma = ja〉 ⊗ |jb,mb = jb〉 is an eigenvector of
J2. What is the value of j for the eigenvector? (Hint: Ja+|ja, ja〉 = Jb+|jb, jb〉 = 0.
Why?)

3.20

(a) Write the direct product �3 ⊗�2 as a direct sum as is done in (3.5.24).
(b) What is the dimension of the space�j ? That is, how many linearly independent

basis vectors are required to span the space �j ?
(c) What is the dimension of the direct-product space �3 ⊗�2?
(d) Sum the dimensions of each space on the right-hand side of (a) and verify that

the sum equals the answer to (c).

3.21 The number of linearly independent eigenvectors |ja, jb, j,m, 〉 is

ja+jb∑

ja−jb

(2j + 1) ,

where ja > jb. Show that this sum equals (2ja + 1)(2jb + 1). Hint:

N
∑

n=1

n = 1

2
N(N + 1) .

3.22 Using the normalization condition 〈j,m|j ′,m′〉 = δm,m′δj,j ′ , show that the
vectors |1/2, 1/2, 0, 0〉 and |1/2, 1/2, 1, 0〉 given in (3.5.34) and (3.5.35), respec-
tively, are orthogonal and that each is normalized to unity.
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3.23 Derive equation (3.5.35) by applying J+ to |1/2, 1/2, 1,−1〉 given in
(3.5.31b).

3.24

(a) Take the scalar product of (3.5.18) with |ja, jb, j
′,m′〉 and verify that

δj,j ′δm,m′ =
∑

ma,mb

C
ja jb j ′
ma mb m′ C

ja jb j
ma mb m .

(b) Using the explicit expressions for Clebsch-Gordan coefficients in (3.5.41),
verify the above equation is satisfied for ja = jb = 1/2, j = j ′ = 1 and
m = m′ = 0.

3.25

(a) Using Table 3.4 on page 177 write expressions for the following Clebsch-
Gordon coefficients:

C
j 1/2 j−1/2
m−1/2 1/2 m , C

j 1/2 j−1/2
m+1/2 −1/2 m ,

C
j 1/2 j+1/2
m−1/2 1/2 m , C

j 1/2 j+1/2
m+1/2 −1/2 m .

(b) If j = 1/2, calculate the non-zero Clebsch-Gordan coefficients and verify that
they agree with the expressions in (3.5.41).

3.26 Calculate the Clebsch-Gordan coefficient C
ja 1 ja−1
ja −1 ja−1 using (3.5.59) and

verify that the answer agrees with the value obtained from Table 3.5.

3.27 Calculate the Clebsch-Gordan coefficient C
ja 1 ja+1
ja 1 ja+1 using (3.5.59) and

verify that the answer agrees with the value obtained from Table 3.5.

3.28 Calculate the Clebsch-Gordan coefficient C
� 1

2 �− 1
2

�−1 1
2 �− 1

2
using (3.5.60) and

and verify that the answer agrees with the value obtained from Table 3.4.

3.29 Calculate the Clebsch-Gordan coefficient using C
ja 1 m

m−1 1 m using (3.5.60) and
verify that the answer agrees with the value obtained from Table 3.5 for each of the
three cases m = ja + 1,m = ja and m = ja − 1.

3.30 Calculate the Clebsch-Gordan coefficient using C
ja 1 ja+1
m+1 −1 m using (3.5.62)

and verify that the answer agrees with the value obtained from Table 3.5. Which
values of the index n must be included in the sum?

3.31 Calculate the Clebsch-Gordan coefficient using C
ja 1 ja

ja−1 0 ja−1 using (3.5.62)
and verify that the answer agrees with the value obtained from Table 3.5. Which
values of the index n must be included in the sum?
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For Sect. 3.6

3.32

(a) Show that (3.6.6) with κ = 0 agrees with (3.6.5a).
(b) Show that (3.6.6) with κ = ±1 agrees with (3.6.5b).

3.33

(a) Calculate the reduced matrix element 〈j ′‖T (J )‖j 〉 for T
(J )
κ=+1 = J+1.

(b) Calculate the reduced matrix element 〈j ′‖T (J )‖j 〉 for T
(J )
κ=−1 = J−1.

3.34 Using the explicit expressions for cj , aj , and dj given in (3.6.19), show that
(3.6.20) is identical to (3.6.18).

3.35

(a) Taking κ = +1 in (3.6.17) and using the explicit expressions for cj , aj , and dj

given in (3.6.19), derive (3.6.21).
(b) Taking κ = −1 in (3.6.17) and using the explicit expressions for cj , aj , and dj

given in (3.6.19), derive (3.6.22).

3.36

(a) When Vκ is hermitian show that in (3.6.20)–(3.6.22) the functions aj and cj

satisfy (aj )
∗ = aj and (cj )

∗ = −cj . Be certain to express dj−1 in terms of cj .
(b) When Vκ is skew-hermitian show that in (3.6.20)–(3.6.22) the functions aj and

cj satisfy (aj )
∗ = −aj and (cj )

∗ = cj .



Chapter 4
Stationary Perturbation Theory

4.1 Stationary Perturbation Theory and Its Underlying
Assumptions

4.1.1 Introduction

The description of any physical system is only approximate. It is true, of course,
that it is possible to solve some models exactly, but such models in turn only
approximately describe real physical systems. For example, the harmonic oscillator
describes a vibrating diatomic molecule only when the vibrations are not too
violent and anharmonic forces are negligible. In a similar vein, it is possible to
find the energy levels of the hydrogen atom using the appropriate non-relativistic
Hamiltonian. But the non-relativistic Hamiltonian or Schrödinger equation is only
approximate: to take into account the spin of the electron, the Pauli equation or
Pauli Hamiltonian must be used to describe the electron. The Dirac equation is
a relativistic equation that describes a spin-1/2 particle. To take into account the
fact that electromagnetic signals travel between the proton and electron at the
speed of light instead of instantaneously, the Bethe-Salpeter equation is employed.
Even when the electron is traveling at speeds far less than that of light, the
electron interacts electromagnetically with itself, causing small but experimentally
detectable deviations from the energy levels calculated from the Pauli equation or
Pauli Hamiltonian. Problems in physics cannot usually be solved exactly. Therefore,
if a physicist wishes to calculate numbers that can be compared with experimental
values, approximations are inevitable.

The most frequently used approximation method is based on the splitting of the
Hamiltonian H into two parts,

H = H0 +H1 . (4.1.1)
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202 4 Stationary Perturbation Theory

This splitting is done so that H0, often called the free or interaction-free
Hamiltonian, is the Hamiltonian of a system such as an oscillator or a rotator with
an eigenvalue equation that can be solved exactly. The Hamiltonian H1 describes
some small interaction that slightly “perturbs” the interaction-free system.

The physical system with the “exact” Hamiltonian H is assumed to be similar to
a model system with a Hamiltonian H0. Here the word “similar” means that each
energy eigenvalue and each energy eigenvector of H corresponds to one energy
eigenvalue and one energy eigenvector of H0. This correspondence is such that when
H1 → 0, the energy eigenvalues and energy eigenvectors of H go into those of
the model system described by H0. While an exactly solvable, similar system does
not exist for every physical system, there are numerous cases for which similar
systems do exist: hydrogen-like atoms and systems in an external field are examples.
Perturbation theory offers one of the most powerful tools for studying such systems.

4.1.2 Magnetic Moment in a Magnetic Field

The interaction-free Hamiltonian H0 is chosen in this case to be the rotator
Hamiltonian, H0 = J2/2I of (2.2.30). To conjecture the interaction Hamiltonian H1
for the interaction with an external magnetic field B, the usual procedure is followed
by starting with the energy of the corresponding classical system and making the
transition to the quantum system by replacing the classical observables by their
corresponding quantum operators. The magnetic field acts on a magnetic dipole
moment μ. The potential energy U of a classical dipole moment μ in a magnetic
field B is given by

U = −μ · B . (4.1.2)

Example 4.1.1 Show that the magnetic dipole moment μ of a mass-point with mass
m and electric charge q moving in a circular orbit with orbital angular momentum l
is given by

μ = q

2m
l . (4.1.3)

Solution Denoting the radius of the orbit by R and the period by T , the speed v of
the mass-point is given by v = 2πR/T . Recalling that the magnetic dipole moment
is the product of the current I = q/T and the area πR2 of the orbit,

μ = q

T
πR2 = qR

2

2πR

T
= qRv

2
= q

2m
Rmv = q

2m
l ,

where the angular momentum l = Rmv. Since l and μ are in the same direction
when q is positive and in opposite directions when q is negative, (4.1.3) immediately
follows.
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In (4.1.3) two masses me and mp ≈ mn ≈ 1836me commonly occur that are of
different orders of magnitude. Consequently in quantum mechanics two units for a
magnetic dipole moment are often used:

(1) The Bohr magneton μB is obtained from (4.1.3) by making the replacements
q → e, m → melectron ≡ me and l → h̄:

Bohr magneton μB ≡ e h̄

2me

= 9.27× 10−24 J/ Tesla (4.1.4)

(2) The nuclear Bohr magneton μN , the second commonly used unit, is identical to
the Bohr magneton except that the electron’s mass is replaced by the proton’s
mass:

Nuclear Bohr magneton μN ≡ eh̄

2mp

= 5.049× 10−27 J/ Tesla (4.1.5)

The magnetic moment of a rotating or spinning physical object with angular
momentum j is, in general, given by

μ = g
q

2m
j . (4.1.6)

Here q is the charge of the object and the factor g, called the Landé factor or
gyromagnetic ratio, is a parameter that takes a specific value characteristic of the
particular physical object. If the physical system is a classical relativistic spinning
particle with no intrinsic structure and with angular momentum s about its center of
mass, then it is possible to show that g = 2. The electron with q = −e is a nearly
structureless, relativistic particle, and its Landé factor satisfies gelectron ∼= 2.1 Thus

μelectron = gelectron

( −e

2me

)

s ∼= 2

( −e

2me

)

s , (4.1.7)

where s is the spin of the electron.
The magnetic moment of a proton, an extended, relativistic object with intrinsic

structure, has been measured to be

μproton = (2+ 3.586)
e

2mp

s . (4.1.8a)

The magnitude of the proton’s spin is h̄/2 so

μproton = (2+ 3.586)
e

2mp

h̄

2
= 2.793 μN . (4.1.8b)

1More precisely, as a result of corrections calculated from quantum electrodynamics, gelectron =
2[1+ α

2π
−0.328

(
α

2π

)2+· · · ] where α = e2/(4πε0h̄c) ∼= 1/137.036 is the Sommerfeld constant.
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The Landé factor for the proton is gproton = 2 + 3.586 where 3.586[e/(2mp)] s is
called the anomalous magnetic moment. It is due to the intrinsic structure of the
proton, which, unlike the electron, is not a nearly structureless particle.

A neutron has structure but no net charge. Its magnetic moment is, therefore,
only anomalous and is empirically determined to be

μneutron = (0− 3.826)
e

2mn

s , (4.1.9a)

implying that

μneutron = (0− 3.826)
e

2mn

h̄

2
= −1.913 μN . (4.1.9b)

Because the Bohr magneton is three orders of magnitude greater than the nuclear
Bohr magneton, the small nuclear magnetic moments of a proton or a nucleus give
noticeable effects only when the much larger magnetic moments of electrons are
absent.

In quantum mechanics the magnetic dipole moment operator μ is obtained by
replacing the classical angular momenta j by the angular momentum operators J:

μ = g
q

2m
J , (4.1.10)

where the Ji fulfill the algebra of angular momentum (2.3.1). The Ji can be the
orbital angular momentum Li , the spin angular momentum Si , or the sum of spin
and orbital angular momentum. For example, for an orbiting, spinning electron, the
magnetic dipole moment operator is

μ = μorbital + μspin = −
e

2me

(L+ 2S) . (4.1.11)

When the physical system is a rotating molecule, a magnetic dipole moment is
produced by the rotational motion of the entire molecule: these magnetic moments
result from the rotation of the positively charged nuclei about the center of mass and
the rotation of the negatively charged electron clouds that move with the nuclei. The
rotation of the charge distribution results in a magnetic moment that, as before, is
proportional to the angular momentum of the molecule and inversely proportional
to the mass of the nucleus,

μmolecule = g
q

2Mnucleus
J . (4.1.12)

The Landé factor g is a measure of the current distribution of the rotating molecule
and is determined empirically from the Zeeman splitting of the energy levels. (For
example, for the diatomic molecule H2, g = 0.883.)
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The magnetic dipole moment produced by the rotational motion of the whole
molecule is of the same order of magnitude as that of the magnetic moments of the
nuclei. In their ground state, most molecules have no angular momentum that results
from motion of the electrons. For these molecules the magnetic dipole moment is
produced by the nuclei of the molecule or by the rotational motion of the entire
molecule and is given by

μ = g
e

2mp

J = gμN
1

h̄
J , (4.1.13)

which is on the order of the magnitude of the nuclear Bohr magneton (4.1.5).

4.1.3 Quantum Rotator in a Uniform Magnetic Field

The quantum rotator in a classical magnetic field is a very special case in that it
can be solved without perturbation theory, but it is nevertheless instructive to first
study this case. If a quantum system with a magnetic moment μ and a Hamiltonian
H0 = J2/2I as given in (2.2.28) for a rotator is placed in a uniform magnetic field
B, from correspondence with the classical energy (4.1.2), the Hamiltonian for the
quantum rotator in a magnetic field is

H = H0 +H1 = J2

2I
− μ · B = J2

2I
− g

q

2m
J · B . (4.1.14)

This Hamiltonian is no longer rotationally invariant, which means that it does not
commute with angular momentum:

[H, Ji] = [μ, Ji ] · B = g
q

2m
[Jk, Ji ]Bk �= 0 . (4.1.15)

The magnetic field B distinguishes a direction and destroys the isotropy of space:
the interaction Hamiltonian H1 due to the magnetic field B has broken the rotational
symmetry.

According to (4.1.14) the free or “unperturbed” Hamiltonian is given by

H0 = J2

2I
, (4.1.16)

and the perturbation or interaction Hamiltonian is

H1 = −g
q

2m
B · J . (4.1.17)
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Perturbation theory is not needed to determine the energy levels of the Hamiltonian
(4.1.14) provided the 3-direction is chosen to point in the direction of the magnetic
field B. That is, when a coordinate system is chosen so that B = (0, 0, B), then
(4.1.14) becomes

H = 1

2I
J 2 − g

q

2m
BJ3 . (4.1.18)

The eigenvectors of the Hamiltonian H = H0+H1 are the eigenvectors |j, j3〉 of the
complete set of commuting observables J 2 and J3 discussed in Chap. 3, Sect. 3.3.
The eigenvalues E0

j of the free Hamiltonian H0 are

H0|j, j3〉 = J2

2I
|j, j3〉 = h̄2j (j + 1)

2I
|j, j3〉 = E0

j |j, j3〉 . (4.1.19)

The eigenvalues Ej,j3 of the exact Hamiltonian H are also immediately obtained by
applying H as given in (4.1.18) to |j, j3〉,

H |j, j3〉 =
[

J2

2I
− g

q

2m
BJ3

]

|j, j3〉 =
[

h̄2j (j + 1)

2I
− g

q

2m
Bh̄j3

]

|j, j3〉 = Ej,j3 |j, j3〉 .
(4.1.20)

The eigenvalues of H0 depend only on j . Thus each eigenvalue E0
j of H0 has a

(2j + 1)-fold degeneracy, implying that to each E0
j there correspond the (2j + 1)-

dimensional space�j . In contrast, the eigenvalues of H depend on both j and j3. To
each eigenvalue Ej,j3 there corresponds one eigenvector |j, j3〉 or, equivalently, the

one-dimensional space R
j
j3

. Therefore, when the external magnetic field is switched
off, B → 0, the (2j+1)-non-degenerate energy levels Ej,j3 of H merge into the
(2j+1)-degenerate energy levels E0

j of H0:

⎛

⎜
⎜
⎜
⎝

Ej,j3=j

Ej,j3=j−1
...

Ej,j3=−j

⎞

⎟
⎟
⎟
⎠
→ E0

j as B → 0 . (4.1.21)

The splitting of the energy levels in a magnetic field is called Zeeman splitting (or
the Zeeman effect), and it occurs for atoms, molecules and any other rotationally
invariant system that is placed in a magnetic field that breaks the symmetry.

If the Hamiltonian (4.1.14) had been used instead of (4.1.18), with B pointing
in any direction other than along the 3-axis, the eigenvectors of J3 could not be the
eigenvectors of H . Eigenvectors |j, jn〉 of H as given in (4.1.14) are eigenvectors of
the complete set of commuting observables J2 and n̂ · J, where n̂ is the unit vector
in the direction of the magnetic field. Eigenvalues of H as given in (4.1.14) could
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then be found by proceeding as before using |j, jn〉 instead of |j, j3〉 where jn is the
eigenvalue of n̂ · J.

The free and exact Hamiltonians H0 and H given in (4.1.16) and (4.1.14),
respectively, do not represent the most general case for free and exact Hamiltonians
in perturbation theory because they commute, [H,H0] = 0, a condition that is not in
general fulfilled. In the general case the exact and free Hamiltonian do not commute,
[H,H0] �= 0, as is the case for atoms and molecules in a magnetic field, for which
H0 would not be a function f (J2). But H0 could be a spherically symmetric, which
implies that it satisfies the condition [H0, Ji ] = 0. Such systems will also have
Zeeman splitting: although the physical situation is very similar to the one just
considered, the eigenvalues Ej,j3 cannot be calculated exactly as in (4.1.20). If H

and H0 do not commute, the procedure called perturbation theory must be used.
This general case is now considered.

4.1.4 Perturbation Theory

Approximate solutions for an “exact” Hamiltonian H = H0 + H1 can be obtained
using a method of calculation called perturbation theory provided there exists a
“free” Hamiltonian H0 for which energy eigenvectors are both known and are also
the best approximations to the energy eigenvectors of H . At first it might seem
that if all the eigenvectors of H0 are known, then the eigenvector of H0 that is the
best approximation to each energy eigenvector of H would automatically be known.
Unfortunately this is not the case. If the energy eigenvalues of H0 are degenerate,
as they usually are, the linear combinations of the eigenvectors of H0, all with the
same energy E0, that are the best approximations to eigenvectors of H with energy
eigenvalues almost equal to E0 are not necessarily known.

In addition to the energy quantum number, other quantum numbers are typically
required to completely specify the state except for very special cases such as the
one-dimensional harmonic oscillator. For example, the quantum number j3 is, in
addition to j , required to specify the states of a rotator.

The set of operators that, together with H0, forms a complete set of commuting
observables with known eigenvalues is denoted by B1, B2, ···, BN−1, or collectively
by B. Their respective eigenvalues b1, b2, · · ·, bN−1 are collectively denoted by b,
and the b1, b2, ···, bN−1 are assumed to be known. As an example, for the Hydrogen
Hamiltonian, b1 = � and b2 = �3 = m.

Case I The characteristic of the first case to be considered is that the same set of
operators B also forms a complete set of commuting observables with H , [H,B] =
0. Then there exist two complete sets of commuting observables consisting of N

operators,

{H0, B1, B2, · · · , BN−1} ≡ {H0, B} , (4.1.22a)

{H,B1, B2, · · · , BN−1} ≡ {H,B} = {H0 +H1, B} . (4.1.22b)
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The solutions of the physical system described by (4.1.22a) are the known
eigenvectors |E0

n, b〉 ≡ |E0
n, b1, b2, · · · , bN−1〉 and known eigenvalues E0

n,b ≡
E0

n,b1,b2,··· ,bN−1
. The solutions of the physical system described by (4.1.22b),

which are not known, are the eigenvectors |En,b, b〉 ≡ |En,b, b1, b2, · · · , bN−1〉
and energy eigenvalues En,b ≡ En,b1,b2,··· ,bN−1 . The eigenvalues of H0 often are
degenerate—they do not depend on b—while the eigenvalues of H usually are not
degenerate—they usually depend on b. For example, for the rotator the eigenvalues
of H0 = J2/2I depend only on j while the eigenvalues of H depend on both j

and j3.

In perturbation theory when H1 → 0, the situation is very similar to that depicted
in (4.1.21). The energy levels E0

n of the interaction-free system are degenerate. To
each of the energy levels E0

n there corresponds a finite or infinite number p of energy
levels En,b of the system with interaction H1. When H1 → 0, all of the p energy
levels En,b merge into the same energy value E0

n,

⎛

⎜
⎜
⎜
⎝

En,b1

En,b2
...

En,bN−1

⎞

⎟
⎟
⎟
⎠
→ E0

n as H1 → 0 . (4.1.23)

As a consequence, p eigenvalues of H correspond to one eigenvalue of H0. The
eigenvectors of H and H0 satisfy

lim
H1→0

|En,b, b〉 = |E0
n, b〉 where b = b1, b2, · · ·, bN−1 . (4.1.24)

As mentioned earlier, the key to obtaining solutions with perturbation theory is
to determine the energy eigenvector of H0 that is the best approximation to each
energy eigenvector of H . Even when E0

n is degenerate, for the case that H0 and H

both commute with B, (4.1.24) reveals that the best approximation to the energy
eigenvector |En,b, b〉 of H and B is the eigenvector |E0, b〉 of H0 and B that has
the same quantum numbers b! For example, for the case of a spin-1/2 rotator in
an external magnetic field, there are two eigenvectors of H0 with the same energy
eigenvalue E0

j = h̄2(1/2)(1/2+1)/2I . Namely, |E0
j ,+1/2〉 and |E0

j ,−1/2〉. If, for
example, an eigenvector of H is desired with j = 1/2, j3 = 1/2, the eigenvector
|E0

j , 1/2〉 of H0 with j3 = 1/2 is the best approximation because it is the only
eigenvector of H0 with the desired eigenvalue j3 = 1/2.

In the typical situation for which perturbation theory applies, there are p known
eigenvectors |E0

n, b〉—where p can be either a finite number or infinite—belonging
to the one known eigenvalue E0

n of H0. The p eigenvectors span the finite or
infinite-dimensional space �p

0 spanned by the eigenvectors of H0 with the same
eigenvalue E0

n. The perturbation H1 then splits the energy level E0
n into the sublevels

En,b, removing the degeneracy of the eigenvalue E0
n. Often—as is the case for

the rotator in a magnetic field—the degeneracy stems from symmetries in the
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unperturbed Hamiltonian H0. The perturbation Hamiltonian H1 then breaks the
symmetry, thereby removing the degeneracy.2 The perturbation Hamiltonian H1
also transforms the space �p

0 , in the whole space H = ∑

n⊕�n
0, into another

space �p spanned by the |En,b, b〉.
In order for (4.1.23) and (4.1.24) to make physical sense, the splitting inside a

multiplet (between the En,b for a given value n and different values of b) should be
small compared to the splitting between different multiplets (between the En,b for a
given value b and different values of n). Thus the perturbation Hamiltonian H1 must
be “small” in a certain mathematical sense (e.g. |〈E0

n, b|H1|E0
n′ , b

′〉| % |E0
n′ −E0

n|).
How to precisely formulate the mathematical conditions on the operators H0 and H

such that (4.1.23) and (4.1.24) result and such that the perturbation theory converges
is a difficult mathematical problem. Physicists use perturbation calculations to
evaluate numbers and hope that H1 has been chosen in such a way that the
perturbation theory somehow converges.

When a situation arises such that [H0, B] = 0 but [H,B] �= 0, the label b could
be used to label the eigenvectors of H , even though the eigenvectors of H are not
eigenvectors of the operators B, revealing that the label b in |En,b, b〉 is only an
“approximate” quantum number defined by the limit of (4.1.24). Such a procedure
is often followed for the continuous eigenvalues E of H in scattering theory where
the b are the asymptotic momenta p and E0 = eigenvalue of H0 = p2/2m.

When H and H0 have discrete spectra, rather than using eigenvectors labeled
by b, it is preferable to find a system of operators A1, A2, · · ·, AN−1 that, together
with H , forms a complete set of commuting observables

[H,A] = 0 , (4.1.25)

and also has the property that

[H0, A] = 0 . (4.1.26)

Then a new system of basis eigenvectors |E0
n, a〉 of the interaction-free system,

which are eigenvectors of the complete set of commuting observables {H0, A}
are obtained by a linear transformation from the known interaction-free basis
eigenvectors |E0

n, b〉:

|E0
n, a〉 =

∑

b

|E0
n, b〉〈E0

n, b|E0
n, a〉 . (4.1.27)

2The one-dimensional harmonic oscillator is a special case of little practical interest for which
there is no degeneracy so that there is only one eigenvector |E0

n〉 of H0 for each value of E0
n . Then

no splitting can occur and there is only one eigenvalue En of H that is shifted slightly from E0
n.

This case is usually discussed in most textbooks under the heading of “non-degenerate perturbation
theory”.
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The new basis vectors |E0
n, a〉 are eigenvectors of H0 with eigenvalue E0

n as are the
|E0

n, b〉. The exact eigenvectors |E, a〉, which are eigenvectors of the complete set of
commuting observables {H,A} = {H,A1, A2, . . . , AN−1} are then obtained from
the known |E0

n, a〉 using perturbation theory. Thus for the case that [H,B] �= 0,
but [H0, B] = 0, perturbation for a degenerate energy spectrum has been reduced
by the linear transformation in (4.1.27) to the previous case (4.1.22) that can be
treated as if there were no degeneracy. The transformation matrix, 〈E0

n, b|E0
n, a〉

depends on the properties of the set of operators B = B1, B2, . . . , BN−1 and A =
A1, A2, . . . , AN−1 and not on H and H0.

An example of the above situation is the complete set of commuting observables
H0, B given by

H0, L2, L3, S2, S3 , (4.1.28)

where L is the orbital angular momentum, S is the spin, and H0 is a function of the
orbital observables only and not of the spin. The eigenvectors |E0

n, b) of the set of
operators (4.1.28) are the direct-product basis vectors

|E0
n, b〉 = |E0

n, �, �3, s, s3, 〉 = |E0
n, �, �3〉 ⊗ |s, s3〉 , (4.1.29)

where s = 1/2 and �,= 0, 1, 2, · · ·.
The exact Hamiltonian H contains an L− S coupling and is given by,

H = H0 + f L · S , (4.1.30)

where f may or may not be a function of operators that commute with Li and Si .
The function f may, for example, be a function of Q2, f = f (Q2), where the Qi

are the components of the position operator Q. The exact Hamiltonian H will not
commute with Li and Si because

[H,Li ] �= 0 , [H,Si] �= 0 . (4.1.31)

However, the exact Hamiltonian will commute with the total angular momentum
operator J = L+ S,

[H, Ji] = 0 . (4.1.32)

The above result is expected because the Hamiltonian is rotationally invariant, but
it also follows immediately from the identity

L · S = 1

2
(J2 − L2 − S2) , (4.1.33)
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and the fact that H0 commutes with Ji . Therefore,

{H0, A} = {H0, J2, J3, L2, S2} , where A = J2, J3, L2, S2 and (4.1.34a)

{H,A} = {H0, J2, J3, L2, S2} (4.1.34b)

are complete sets of commuting observables that differ only in the operators H

and H0.
The eigenvectors of the complete set of commuting observables (4.1.34b),

|E0
n, a〉 = |E0

n, j, j3, �, s〉 , (4.1.35)

are obtained by expanding them in terms of direct-product vectors (4.1.29),

|E0
n, j, j3, �, s〉 =

∑

�3,s3

|E0
n, �, �3, s, s3〉〈E0

n, �, �3, s, s3|E0
n, j, j3, �, s〉 .

(4.1.36a)

In the above equation E0
n depends only on the variable n, allowing the two vectors

in the scalar product to be written as

|E0
n, j, j3, �, s〉 =

∑

�3,s3

|E0
n, �, �3, s, s3〉[〈E0

n| ⊗ 〈�, �3, s, s3|][|E0
n〉 ⊗ |j, j3, �, s〉] .

(4.1.36b)

For normalized energy eigenstates, 〈E0
n|E0

n〉 = 1, yielding the desired result,

|E0
n, j, j3, �, s〉 =

∑

�3,s3

|E0
n, �, �3, s, s3〉〈�, �3, s, s3|j, j3, �, s〉 , (4.1.36c)

where 〈�, �3, s, s3|j, j3, �, s〉 ≡ 〈�, �3, s, s3|j, j3〉 are the Clebsch Gordon coeffi-
cients discussed in Chap. 3, Sect. 3.5.

Case II There is a second very special case in which it is possible to immediately
determine the energy eigenvector of H0 that is the best approximation to a specific
eigenvector of H . If the energy eigenvalues of H0 are not degenerate, so that there
is only one eigenvector |E0

n, bi〉 of H0 for each value of E0
n, then the single energy

eigenvector of H0 with energy E0
n is the best approximation to an eigenvector of H

with almost the same energy. For example, for a rotator in constant magnetic fields
B3 and B1 that point in the 3- and 1-directions, respectively, the Hamiltonian H is
given by

H = J2

2I
− g

q

2m
B3J3 − g

q

2m
B1J1 . (4.1.37)
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If B1 % B3, the last term can be treated as a perturbation:

H0 = J2

2I
− g

q

2m
B3J3 , H1 = −g

q

2m
B1J1 . (4.1.38)

The eigenvector of H0 has an energy equal to

E0
j,j3

= h̄2j (j + 1)

2I
− g

q

2m
B3j3 (4.1.39)

and its eigenvector is the single eigenvector |E0
j,j3

, j3〉 = |j, j3〉. So even though
there exists no operator B that commutes with both H0 and H , it is possible to
immediately identify the eigenvector of H0 that is the best approximation to any
eigenvector of H .

The very special case in which there is no degeneracy in the eigenvalues of H0,
and there is only one eigenvalue En of H that is slightly shifted from E0

n will be
considered as will the case where there exists an operator B that commutes both
with H0 and H . The two cases need not be considered separately because in either
case the energy eigenvector of H0 is already known that is the best approximation
to each eigenvector of H . Specifically, in the next section perturbation theory will
be developed that determines the unknown eigenvalues En, bi and eigenvectors
|En,bi , bi〉 of H in terms of the known eigenvectors |E0

n, bi〉 of H0.

Case III One final case remains that requires special consideration. If an operator
B cannot be found that commutes with both H0 and H , and if the energy eigenvalues
of H0 are degenerate, then the eigenvector of H0 that is the best approximation to a
specific eigenvector of H is not immediately known. For example, assume that H0
and B form a complete set of commuting operators, and H and C (B �= C) also
form a complete set of commuting operators. If E0

n is doubly degenerate, there are
two eigenvectors of H0 that have the eigenvalue E0

n, namely |E0
n, b1〉 and |E0

n, b2〉.
In general the eigenvector of H0 that is the best approximation to an eigenvector
|En,c1, c1〉 of H with an energy eigenvalue En,c1 that almost equals E0

n is a linear
combination of the two eigenvectors of H0 with energy E0

n,

|En,d1 , d1〉 ∼= α1|E0
n , b1〉 + α2|E0

n , b2〉 (4.1.40)

where the αi are constants that must be determined. So for this final case, which
will be discussed in Sect. 4.3, the eigenvector of H0 that is the best approximation
to each eigenvector of H is not immediately known but instead must be determined
by solving for the αi .
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4.2 Stationary Perturbation Expansion

In this section approximate formulas are derived for the energy eigenvalues and
energy eigenvectors of H = H0+H1 in terms of the energy eigenvectors and energy
eigenvalues of H0. The formulas derived here can be used for the cases listed below:

Case I A complete set of hermitian operators B is known that satisfies

[B,H0] = [B,H ] = 0 . (4.2.1)

Case II The eigenvalues of H0 are non-degenerate.

The second case is a special situation in which the eigenvalues b of B take only a
single value. The third and final case will be considered in the next section:

Case III The energy eigenvalues of the free Hamiltonian H0 are degenerate and no
complete set of hermitian operators B is known that commutes with both H0 and H .

In all three cases the free or unperturbed Hamiltonian H0 is assumed to have been
solved in a basis |E0

n, b〉 satisfying

H0|E0
n, b〉 = E0

n|E0
n, b〉 , (4.2.2a)

B|E0
n, b〉 = b|E0

n, b〉 . (4.2.2b)

Usually the eigenvalues of H0 depend only on the quantum number n and not on b

although there are exceptions. For later convenience the eigenvectors |E0
n, b〉 are

normalized as follows:

〈E0
n′ , b

′|E0
n, b〉 = δn,n′ δb,b′ . (4.2.3)

For Case I eigenvectors |En,b, b〉 of the “exact” Hamiltonian H are sought that
satisfy

H |En,b, b〉 = En,b|En,b, b〉 , (4.2.4a)

B|En,b, b〉 = b|En,b, b〉 , (4.2.4b)

where

|En,b, b〉 −→
H1→0

|E0
n, b〉 . (4.2.5)

Even if the energy eigenvalues E0
n are degenerate, the eigenvector of H0 that is the

best approximation to |En,b, b〉 is known: it is the eigenvector of H0 that has the
same quantum numbers n and b.
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For Case II eigenvectors |En〉 of the “exact” Hamiltonian H are sought that
satisfy

H |En〉 = En|En〉 , (4.2.6)

where

|En〉 −→
H1→0

|E0
n〉 . (4.2.7)

If H commuted with some other operator, the eigenvectors |En〉 would be labeled
by additional quantum numbers that are omitted here because they are of no
consequence for the discussion. Because the energy eigenvalues of H0 are non-
degenerate, the eigenvector of H0 that is the best approximation to |En〉 is the
eigenvector of H0 with the same quantum number n. For both Case I and Case II,
approximate energy eigenvalues and eigenvectors are known. Case III must be
considered separately because approximate energy eigenvectors are not initially
known and must be calculated.

Cases I and II Having found the eigenvectors |E0
n, b〉, the eigenvalue b plays a

passive role in all remaining formulas. That is, the eigenvalue b is the same for all
eigenvalues and eigenvectors in the formulas that follow in this section. Therefore,
to simplify notation, the index b is suppressed by adopting the notation

En,b → En , E0
n → E0

n , |En,b , b〉 → |En〉 , |E0
n b〉 → |E0

n〉 , (4.2.8)

while keeping in mind that the energy eigenvalues and eigenvectors do, in general,
depend on b. (The reader can, of course, put the index b back into the formulas
by reversing the above substitutions.) However, having suppressed the index b, the
notation for the eigenvectors of H0 is the same for Case I and Case II, so both cases
can be considered simultaneously.

The perturbation calculation is begun by considering the following matrix
element of (4.1.1):

〈E0
n′ |H |En〉 = 〈E0

n′ |H0 +H1|En〉 . (4.2.9)

The matrix element on the left-hand side of (4.2.9) is simplified using the fact
that |En〉 is, by definition, an eigenvector of H with (unknown) eigenvalue En.
The first matrix element on the right-hand side of (4.2.7) is evaluated using the
Hermiticity of H0 and (4.2.2a). Thus

En〈E0
n′ |En〉 = E0

n′ 〈E0
n′ |En〉 + 〈E0

n′ |H1|En〉 . (4.2.10)

Since the perturbation is assumed to be small, the energy eigenvalues En and E0
n do

not differ by much. For the same reason the eigenvectors |En〉 and |E0
n〉 are almost
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the same, implying that the matrix element 〈E0
n′=n

|En〉 ≈ 〈E0
n|E0

n〉 = 1. Taking
n′ = n in (4.2.10), it is thus possible to divide by the non-zero matrix element
〈E0

n|En〉,

En = E0
n +

〈E0
n|H1|En〉
〈E0

n|En〉 = E0
n +ΔEn . (4.2.11)

Equation (4.2.11), which is one of two fundamental equations in stationary perturba-
tion theory, reveals that the exact energy values En are equal to the energy values E0

n

of the interaction-free system plus a small perturbation ΔEn. As can be seen from
the above equation, ΔEn is given by the matrix element of the “small” interaction
Hamiltonian H1 and must be calculated.

To derive the second fundamental equation of stationary perturbation theory, the
“exact” eigenvectors |En〉 of H are expanded in terms of the known eigenvectors
|E0

n′ 〉 of H0. The eigenvectors |E0
n〉 of the complete set of commuting observables

H0 (and B) form a complete basis system in the space H of state vectors. Thus
every vector φ ∈H can be expanded in terms of this basis system:

φ =
∑

n′
|E0

n′ 〉〈E0
n′ |φ〉 . (4.2.12)

In particular each eigenvector φ = |En〉 of the complete set of commuting
observables H (and B) can be expanded as in (4.2.12)

|En〉 =
∑

n′
|E0

n′ 〉〈E0
n′ |En〉 = |E0

n〉〈E0
n|En〉 +

∑

n′ �=n

|E0
n′ 〉〈E0

n′ |En〉 . (4.2.13)

For a given value of n, the terms with n′ = n and n′ �= n are of different
magnitudes:

〈E0
n|En〉 ≈ 〈E0

n|E0
n〉 = 1 , (4.2.14a)

〈E0
n′ |En〉 ≈ 〈E0

n′ |E0
n〉 = 0 for n′ �= n . (4.2.14b)

Therefore, the eigenvector |En〉 of H is written as the corresponding eigenvector
|E0

n〉 plus an (infinite) sum of terms that are much smaller in magnitude. In (4.2.13)
the large term |E0

n〉 is isolated by adding and then subtracting it,

|En〉 = |E0
n〉 + [〈E0

n|En〉 − 1]|E0
n〉 +

∑

n′ �=n

|E0
n′ 〉〈E0

n′ |En〉 . (4.2.15)

As a consequence of (4.2.14), all terms on the right-hand side of (4.2.15) are small
except the first.
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A more convenient expression for the final matrix element in (4.2.15) can be
obtained by taking n′ �= n in (4.2.10). The energy difference En − E0

n′ is different
from zero because En − E0

n′ ≈ E0
n − E0

n′ �= 0. Therefore, it is possible to divide
(4.2.10) by En − E0

n′ ,

〈E0
n′ |En〉 =

〈E0
n′ |H1|En〉

En − E0
n′

n′ �= n . (4.2.16)

Using the above result (4.2.15) becomes

|En〉 = |E0
n〉 + [〈E0

n|En〉 − 1]|E0
n〉 +

∑

n′ �=n

|E0
n′ 〉
〈E0

n′ |H1|En〉
En − E0

n′
. (4.2.17)

The summation in (4.2.17) should actually be over all possible values of the
quantum numbers n and b that characterize the state |E0

n, b〉. However, as shown
in the following example, the matrix element of H1 in the above equation is zero
unless b = b′ so it is not necessary to sum over the eigenvalue b. If the eigenvalue b

were put back into (4.2.17), each eigenvector would just have the same eigenvalue b.

Example 4.2.1 If there exists an hermitian operator B that commutes with both H0
and H = H0 +H1, show that

〈E0
n, bi |H1|En,bj , bj 〉 = 0 if bi �= bj ,

where

B|E0
n, bi〉 = bi |E0

n, bi〉 , B|En,bj , bj 〉 = bj |En,bj , bj 〉 .

Solution Because B commutes with both H0 and H ,

[B,H1] = [B,H −H0] = [B,H ]− [B,H0] = 0 ,

it also commutes with H1. To establish the desired result, the first equation above
implies

0 = 〈E0
n, bi |[H1B − BH1]|En,bj , bj 〉 = 〈E0

n, bi[H1bj − biH1]|En,bj , bj 〉
= (bj − bi)〈E0

n, bi |H1|En,bj , bj 〉 .

The above equation requires that

〈E0
n, bi |H1|En,bj , bj 〉 = 0 if bi �= bj .
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Equations (4.2.11) and (4.2.17) are the two fundamental equations in stationary
perturbation theory, and are, respectively, exact equations for the energy En and
eigenvectors |En〉. But the unknown quantity |En〉 appears on the right-hand side
of both equations, and En occurs on the right-hand side of (4.2.17). To solve the
equations, the left-hand sides are successively substituted into the right-hand sides.
In carrying out this iterative procedure, it is important to keep in mind that H1 is a
small perturbation. Thus on the right-hand side of (4.2.11) the second term is small
compared with the first. Similarly, on the right-hand side of (4.2.17), both the second
term and the sum over n′ have small coefficients compared with the first term.

Zeroth-Order Approximation
The zeroth-order approximation for the eigenvalues En and eigenvectors |En〉,
denoted by E

(0)
n and |E(0)

n ), respectively, are obtained by setting H1 = 0. Thus,

En → E(0)
n → E0 , |En〉 → |E(0)

n )→ |E0
n〉 . (4.2.18)

First-Order Approximation
Since the terms on the right-hand side of (4.2.11) and (4.2.17) that involve En

or |En〉 are small, the first-order approximations to En and |En〉 are obtained by
substituting their zeroth-order approximations on the right-hand sides of (4.2.11)
and (4.2.17), respectively. Denoting the first-order approximation for energy by E

(1)
n

and using (4.2.18), (4.2.11) becomes

E(1)
n = E0

n +
〈E0

n|H1|E0
n〉

〈E0
n|E0

n〉
. (4.2.19)

The orthogonality relation (4.2.3) for the eigenvectors |E0
n〉 yields the desired result,

E(1)
n = E0

n + 〈E0
n|H1|E0

n〉 = E0
n +ΔE(1)

n . (4.2.20)

To first order the splitting ΔE
(1)
n of the degenerate energy levels E0

n of the free or
unperturbed Hamiltonian equals the matrix element of the perturbation H1 between
the unperturbed, known eigenstates |E0

n〉.
Denoting the first-order approximation for energy eigenvectors by |E(1)

n 〉 and
using (4.2.18), (4.2.17) becomes

|E(1)
n 〉 = |E0

n〉 +
[

〈E0
n|E0

n〉 − 1
]

|E0
n〉 +

∑

n′ �=n

|E0
n′ 〉
〈E0

n′ |H1|E0
n〉

E0
n − E0

n′
. (4.2.21)

From (4.2.3) the matrix element 〈E0
n|E0

n〉 = 1, so the above equation takes the final
form

|E(1)
n 〉 = |E0

n〉 +
∑

n′ �=n

|E0
n′ 〉
〈E0

n′ |H1|E0
n〉

E0
n − E0

n′
. (4.2.22)
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Example 4.2.2 Using first-order perturbation theory, calculate the ground-state
energy level of the hydrogen atom when it experiences a perturbation H1 =
g(Q2

x +Q2
y +Q2

z) where g is a constant, and Qx = Q2x −Q1x etc. is the relative
position as given in (3.2.31). (A force that increases linearly with the radial distance
between the electron and proton yields a perturbation of the above form.)

Solution From Table 3.1, the normalized, ground-state wave function for hydrogen
is

〈x|E0
1〉 ≡ 〈x|E1, � = 0, m = 0〉 ≡ ψ1,0,0(x) = 1

(rB)
3/2

1√
π

e
− r

r0 ,

where r0 = 4πε0h̄
2/(μe2). Because both the “free” and “exact” Hamiltonians H0

and H commute with L2 and L3, the eigenstates of both Hamiltonians can be labeled
by the quantum numbers b = �,m. Since the additional quantum numbers b = �,m

have been suppressed, in the notation of this section, 〈x|E1, � = 0,m = 0〉 =
〈x|E0

1〉. From (4.2.20), to first order in the perturbation, the ground-state energy is

E
(1)
1 = E0

1 + 〈E0
1 |H1|E0

1〉 = E0
1 + 〈E0

1 |g(Q2
x +Q2

y +Q2
z)|E0

1〉

Using (3.2.20) twice,

E
(1)
1 = E0

1 +
∫∫ ∞

−∞
d3x ′d3x〈E0

1 |x′〉〈x′|g(Q2
x +Q2

y +Q2
z)|x〉〈x|E0

1〉 .

Recalling that the generalized position eigenvectors satisfy Qi |x〉 = xi |x〉 and fulfill
the normalization condition 〈x′|x〉 = δ3(x− x′),

E
(1)
1 − E0

1 =
∫∫ ∞

−∞
d3x d3x ′〈E0

1 |x′〉g(x2 + y2 + z2)δ3(x− x′)〈x|E0
1〉

=
∫ ∞

−∞
d3x〈E0

1 |x〉gr2〈x|E0
1〉 =

g

πr3
0

∫ ∞

0
dr r2

∫ π

0
dθ sin θ

∫ 2π

0
dφ r2e−2r/r0

= g

πr3
0

(4π)

∫ ∞

0
dr r4e−2r/r0 = 3gr2

0
.

As a result of the perturbation, the ground state energy is raised an amount 3gr2
B .

Example 4.2.3 Use first-order perturbation theory to calculate the n = 2, � = 1
energy levels of the hydrogen atom in the presence of the perturbation H1 =
g(Q2

x + Q2
y + Q2

z) of the previous example. The n = 2, � = 1 hydrogen atom
wave functions are 〈x|E2, � = 1,m = 0〉 = Rn=2,�=1(r)Y

m
�=1 The radial wave

function and spherical harmonics are tabulated, respectively, in Tables 3.1 and 3.2.

Solution As discussed in the previous example, the eigenstates of both the free
Hamiltonian and the “exact” Hamiltonian can be labeled by the quantum numbers
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b = �,m. Therefore, although the n = 2; � = 1; m = ±1, 0 energy levels are
degenerate, the eigenvector |E(0)

n=2, � = 1,m) of H0 is the best approximation to
the eigenvector |En=2, � = 1,m〉 of H . Consequently it is possible to calculate the
energy levels of the “exact” Hamiltonian to first order in the perturbation using the
formulas that have just been derived. Putting the quantum numbers b = �,m back
into (4.2.20),

E
(1)
n=2,�=1,m = E0

n=2 + 〈E0
n=2,�=1,m|H1|E0

n=2,�=1,m〉 .

Rewriting the matrix element as an integral over wave functions as was done in
the previous example and using the explicit expressions for hydrogen atom wave
functions,

E
(1)

n=2,�=1,m= E0
n=2

+ g

∫ ∞

0
dr r2

(
1√

3(2rB)3/2

r

r0

e−r/2r0

)2

r2
∫ 2π

0
dφ

∫ π

0
dθ sin θ |Y�=1

m 〈θ, φ)|2 .

As can be readily checked, the integral over the spherical harmonic is unity.
Evaluating the radial integral,

E
(1)
n=2,�=1,m = E0

n=2 + 30 gr2
0
.

Example 4.2.4 A rotator in a uniform magnetic field B3 experiences a perturbation
α(J2)

2 where α is a constant. Using first-order perturbation theory calculate the
energy eigenvalues and eigenvectors.

Solution From (4.1.14), the Hamiltonian H0 of a rotator in a uniform magnetic field
pointing in the 3-direction is

H0 = 1

2I
J2 − g

q

2m
B3J3 and H1 = α(J2)

2.

For this problem a complete set of commuting operators for the free Hamiltonian
consists of H0 and J3. But J3 does not commute with H , and a complete set of com-
muting operators for the “exact” Hamiltonian consists of H and −g(q/2m)B3J3 +
α(J2)

2. In spite of the fact that an operator B that commutes with both H0 and
H does not exist, it is still possible to use (4.2.20) and (4.2.22), respectively, to
calculate the eigenvalues and eigenvectors of H to first order in α because the
eigenvalues of H0 are non-degenerate. For this problem

|E0
n〉 = |E0

j,j3
, j3〉 ≡ |j, j3〉 and E0

j,j3
= h̄2j (j + 1)

2I
− g

qh̄

2m
B3j3 ,
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where |j, j3〉 is the usual angular momentum basis (2.3.35). To calculate the first-
order correction to E0

j,j3
for this problem, (4.2.20) becomes

E(1) = E0
j,j3

+ 〈j, j3|α(J2)
2|j, j3〉 .

Using J2 = −(i/2)(J+ − J−) to rewrite (J2)
2 in terms of the angular momentum

raising and lowering operators J±,

E(1) = E0
j,j3

+ α〈j, j3|
[

− i

2
(J+ − J−)

]2

|j, j3〉 ,

= E0
j,j3

− α

4
〈j, j3|J 2+ + J 2− − J+J− − J−J+|j, j3〉 .

Only the last two terms have non-zero diagonal matrix elements. Using (2.3.43b)
and (2.3.43c),

E(1) = E0
j,j3

+ α

4
h̄2 [(j + j3)(j − j3 + 1)+ (j − j3)(j + j3 + 1)]

= E0
j,j3

+ α

2
h̄2 [(j + j3)(j − j3)+ j ] .

The eigenvectors of H are calculated to first order in α by employing (4.2.22),

|E(1)〉 = |j, j3〉 +
∑

j ′3 �=j3

|j, j3〉 〈j, j
′
3|α(J 2

2 )|j, j3〉
E0

j,j3
− E0

j,j ′3

.

On the right-hand side there is no sum over j since J2 commutes with both H0 and
H , and |E(1)) is an eigenstate of J2 with angular momentum j . Rewriting (J2)

2 in
terms of raising and lowering operators,

|E(1)〉 = |j, j3〉 + −α

4

∑

j ′3 �=j3

|j, j ′3〉
〈j, j ′3|J 2+ + J 2− − J+J− − J−J+|j, j3〉

E0
j,j3

− E0
j,j ′3

.

The operator (J+)2 has a non-zero matrix element only when j3′ = j3 + 2, the
operator (J−)2 has a non-zero matrix element only when j3′ = j3 − 2, and the
operators J+J− and J−J+ do not contribute since the term with j3 = j3′ is not
included in the sum. Therefore,

|E(1)〉 = |j, j3〉 − α

4

〈j, j3 + 2|J 2+|j, j3〉
E0

j,j3
− E0

j,j3+2

|j, j3 + 2〉

− α

4

〈j, j3 − 2|J 2−|j, j3〉
E0

j,j3
− E0

j,j3−2

|j, j3 − 2〉 .



4.2 Stationary Perturbation Expansion 221

Evaluating the matrix elements and using the explicit expression for E0
j,j3

,

|E(1)〉 = |j, j3〉− αh̄m

4gqB3

√

(j − j3)(j − j3 + 1)(j + j3 + 1)〈j + j3 + 2) |j, j3+2〉

+ αh̄m

4gqB3

√

(j + j3)(j + j3 − 1)(j − j3 + 1)(j − j3 + 2) |j, j3 − 2〉 .

In this example the quantum numbers that label the eigenvectors |E(1)〉 of H

have not been explicitly listed. Since H and −g(q/2m)B3J3 + α(J2)
2 constitute a

complete set of commuting operators, the eigenvalues of these two operators could
be used to completely specify the eigenvectors of H .

Second-Order Approximation
To obtain the second-order approximation, the first-order approximations for En and
|En〉 are substituted into the right-hand sides of (4.2.11) and (4.2.17). The results are
as follows (Problems 4.14 and 4.15):

E(2)
n = E0

n + 〈E0
n|H1|E0

n〉 +
∑

n′ �=n

|〈E0
n|H1|E0

n′ 〉|2
E0

n − E0
n′

, (4.2.23)

and

|E(2)
n 〉 = |E0

n〉 +
∑

n′ �=n

|E0
n′ 〉
〈E0

n′ |H1|E0
n〉2

E
(1)
n − E0

n′

+
∑

n′ �=n

∑

n′′ �=n

|E0
n′ 〉
〈E0

n′ |H1|E0
n′′ 〉

E
(1)
n − E0

n′

〈E0
n′′ |H1|E0

n〉
E0

n − E0
n′′

. (4.2.24)

Continuing in this fashion it is possible to obtain higher-order approximations for
the exact energy eigenvalues and eigenvectors.

Note that the eigenvectors |E(1)
n ) are neither normalized nor orthogonal. How-

ever, since the matrix element of H1 is small, from (4.2.22) it follows that the
deviations from orthogonality are small. Similarly, the eigenvectors |E(2)

n 〉 are also
neither normalized nor orthogonal. The exact eigenvectors |En,b, b〉 ≡ |En〉 in
(4.2.17) could be normalized to unity. Instead it is conventional to choose the
normalization

〈E0
n|En〉 = 1 , (4.2.25)

which also fixes the relative phase of the “exact” eigenvector |En〉 and the free
eigenvector |E0

n〉. With the above choice for normalization, the exact Eqs. (4.2.11)
and (4.2.17) become, respectively,

En = E0
n + 〈E0

n|H1|En〉 , (4.2.26)
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and

|En〉 = |E0
n〉 +

∑

n′ �=n

|E0
n′ 〉
〈E0

n′ |H1|En〉
En − E0

n′
. (4.2.27)

If the iteration procedure for solving (4.2.11) and (4.2.17) is to make sense, the
exact eigenvector |En〉 must not differ much from |E0

n〉. From (4.2.17) it is possible
to conclude that

|〈E0
n′ |H1|En〉| % |En − E0

n′ | . (4.2.28)

But even if the above condition is satisfied, it does not always ensure that the lowest
order solution is actually an approximation to the exact solution. However, there
is a large class of problems for which the approximation does work, including the
spectra of atoms and molecules where H0 is given by the Coulomb interaction. The
interaction Hamiltonian H1 could describe the interaction with a weak electromag-
netic field or the interaction between the spin of the electrons and the magnetic field
due to nuclear motion.

Example 4.2.5 Consider the Hamiltonian H = H0 +H1 in one-dimensional space
where H0 = P 2/2μ+ (1/2)kQ2 and H1 = λQ.

(a) Calculate the exact energy eigenvalues En.
(b) Express the exact energy eigenvectors |En〉 in terms of operators and the exact

ground-state energy eigenvector |E0〉.
(c) Use second-order perturbation theory to calculate the energy E

(2)
n and verify

that En and E
(2)
n agree to second order in λ.

(d) Calculate the energy eigenvectors |E(1)
n 〉 using first-order perturbation theory.

(e) In the formula in (b), substitute the expression for |E(1)
0 〉 calculated from

perturbation theory and verify that |E(1)
n 〉 calculated from (b) agrees with the

expression calculated in (d) to first order in λ.

Solution

(a) As can readily be checked, by “completing the square” the Hamiltonian can be
written in the form

H = P 2

2μ
+ 1

2
k(Q+ λ

k
)2 − λ2

2k
,= P 2

2μ
+ 1

2
k(Q′)2 − λ2

2k
.

Since P and Q′ obey the Heisenberg commutation relations (1.2.11), it
immediately follows from (1.2.40) that the exact energy eigenvalues are

En = h̄ω

(

n+ 1

2

)

− λ2

2k
, n = 0, 1, . . . ,
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(b) From (1.2.49)

|En〉 = 1√
n! (a

†)n|E0〉 ,

where

a† = 1√
2

(√
μω

h̄
(Q+ λ

k
)− i√

μωh̄
P

)

.

To calculate E
(2)
n and |E(1)

n ) from perturbation theory, the relations

E0
n = h̄ω

(

n+ 1

2

)

,

and

〈E0
n|Q|E0

n′ 〉 =
√

h̄

2μω

[√
n′ + 1 δn,n′+1 +

√
n′ δn,n′−1

]

,

given, respectively, by (1.2.40) and (1.2.52) are needed.
(c) Using (4.2.24) and noting that the only non-zero matrix elements 〈E0

n|Q|E0
n′ 〉

in the sum occur for n′ = n− 1 and n′ = n+ 1,

E(2)
n = E0

n + 〈E0
n|λQ|E0

n〉 +
|〈E0

n|λQ|E0
n−1〉|2

E0
n − E0

n−1

+ |〈E
0
n|λQ|E0

n+1〉|2
E0

n − E0
n+1

= h̄ω

(

n+ 1

2

)

+ 0+
(

λ

√
h̄

2μω

√
n
)2

h̄ω
(

n+ 1
2

)

− h̄ω
(

n− 1+ 1
2

)

+
(

λ

√
h̄

2μω

√
n+ 1

)2

h̄ω
(

n+ 1
2

)

− h̄ω
(

n+ 1+ 1
2

) = h̄ω

(

n+ 1

2

)

− λ2

2k
.

The above equation agrees with the exact expression En to order λ2. In fact, for
this specific perturbation E

(2)
n and En agree exactly.

(d) Noting that 〈E0
n|Q|E0

n′ 〉 is non-zero only when n′ = n − 1 and n′ = n + 1,

Eq. (4.2.22) for |E(1)
n 〉 becomes

|E(1)
n 〉 = |E0

n〉 + |E0
n−1〉

〈E0
n−1|λQ|E0

n〉
E0

n − E0
n−1

+ |E0
n+1〉

〈E0
n+1|λQ|E0

n〉
E0

n − E0
n+1

.
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Employing the explicit expression for 〈E0
n|Q|E0

n′ 〉 and E0
i ,

|E(1)
n 〉 = |E0

n〉 +
λ

k

√
μω

2h̄

√
n|E0

n−1〉 −
λ

k

√
μω

2h̄

√
n+ 1|E0

n+1〉 .

(e) Making the replacement En → E
(1)
n in (b),

|E(1)
n 〉 �

1√
n!
[

1√
2

(√
μω

h̄
(Q+ λ

k
)− i√

μωh̄
P

)]n

|E(1)
0 〉 .

Using (d) to express |E(1)
0 〉 in terms of |E(0)

0 〉 and |E(0)
1 〉 and defining the “free”

raising operator

a(0)† = 1√
2

(√
μω

h̄
Q− i√

μωh̄
P

)

,

|E(1)
n 〉 �

1√
n!
(

a(0)† + λ

k

√
μω

2h̄

)n [

|E(0)
0 〉 − λ

k

√
μω

2h̄
|E(0)

1 〉
]

.

Keeping only the first two terms in the binomial expansion,

|E(1)
n 〉 �

1√
n!
[

(a(0)†)n + λ

k

√
μω

2h̄
(a(0)†)n−1 + · · ·

] [

|E(0)
0 〉 − λ

k

√
μω

2h̄
|E(0)

1 〉
]

.

Deleting the term proportional to λ2,

|E(1)
n 〉 =

1√
n! (a

(0)†)n|E(0)
0 〉 + n√

n!
λ

k

√
μω

2h̄
(a(0)†)n−1|E(0)

0 〉

− 1√
n!

λ

k

√
μω

2h̄
(a(0)†)n|E(0)

1 〉 .

Using

(a(0)†)m |E(0)
n 〉 =

√

(n+m)!
n! |E(0)

n+m〉 ,

that immediately follows from (1.2.50), the final equation in (d) is obtained,
implying that |E(1)

n 〉 calculated in (d) and (e) agree as they must.

In summary, the formulas derived in this section express the eigenvalues
and eigenvector of the “exact” Hamiltonian H in terms of the eigenvalues and
eigenvectors of the free Hamiltonian H0. These formulas can be used if the energy
eigenvalues of H0 are non-degenerate or if it is possible to find a set of hermitian
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operators B that commute with both H0 and H such that H0 and B as well as H and
B form complete sets of commuting observables.

4.3 Degenerate, Stationary Perturbation Expansion

In the previous section the following two cases were considered:

Case I A hermitian operator B is known that commutes with both H0 and H1 where
B and H0 form a complete set of commuting observables.

Case II The eigenvalues of H0 are non-degenerate.
For either of these cases, the zeroth-order approximation to each of the eigen-

vectors of the “exact” Hamiltonian can be immediately identified and is a single
eigenvector of H0.

In this section the remaining case is considered:

Case III The energy eigenvalues of the free Hamiltonian H0 are degenerate, and
no hermitian operator B is known that commutes with both H0 and H .

For the case now being considered, H0 and B form a complete set of commuting
observables, but B does not commute with the “exact” Hamiltonian H . A complete
set of commuting operators for the “exact” Hamiltonian consists of H and opera-
tors D with eigenvalues d . The operators D are assumed not to commute with H0
since the situation would then reduce to Case I considered in the previous section.
As in the previous section, it is still assumed that to each eigenvalue En,d of H there
corresponds an eigenvalue E0

n of H0 such that

⎛

⎜
⎜
⎜
⎝

En,d1

En,d2
...

En,dm

⎞

⎟
⎟
⎟
⎠
→ E0

n as H1 → 0 . (4.3.1)

As a consequence, m eigenvalues of H correspond to one eigenvalue of H0, which
is m-degenerate where m is an integer or infinity.

It is not difficult to understand how perturbation theory must be modified for
the case being considered. First attention is restricted to the simplest situation
where two eigenstates of H0, denoted |E0

n,b1
〉 and |E0

n,b2
〉, have the same energy

eigenvalue E0
n. When a perturbation H1 is applied, two new stationary states are

obtained, |En,d1, d1〉 and |En,d1, d2〉 that are eigenstates of the exact Hamiltonian
H = H0 + H1 with respective energy eigenvalues En,d1 and En,d2 . When the
perturbation is “turned off”, it is not necessarily true that |En,d1, d1〉 → |E0

n,b1
〉 and

|En,d1, d2〉 → |E0
n,b2
〉. Instead, in general, as the interaction is “turned off”, each

of the exact eigenvectors approaches some linear combination of the unperturbed
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eigenvectors:

lim
H1→0

|En,d1, d1〉 = α1|E0
n, b1〉 + α2|E0

n, b2〉 , (4.3.2a)

lim
H1→0

|En,d2, d2〉 = α3|E0
n, b1〉 + α4|E0

n, b2〉 . (4.3.2b)

In the above two equations each of the αi is a constant. As indicated in (4.3.1), when
the energy eigenvalues are degenerate, both of the exact energy eigenvalues En,d1

and En,d1 approach E0
n as the perturbation H1 is “turned off”. That is, the energy

eigenvalue that is almost correct is known. But as the perturbation is turned off, the
constants αi in (4.3.2) are not known so the energy eigenvector of H0 that is the best
approximation to each energy eigenvector of H is not known.

Since the energy eigenvector of H0 that is the best approximation to each energy
eigenvector of H must be determined, it is written in the form

lim
H1→0

|En,d, d〉 ≡ |E0
n, d〉 = c1|E0

n, b1〉 + c2|E0
n, b2〉 , (4.3.3)

as required by (4.3.2). In the above equation, d represents either of the eigenvalues
d1 or d2 just as j3 represents either of the eigenvalues 1/2 or −1/2 when j = 1/2.
The constants c1 and c2, which are unknown and must be determined, take on
different values for d = d1 and d = d2. In the following calculations |E0

n,b1
〉 and

|E0
n,b2
〉 are assumed to be orthonormal,

〈E0
n, bi |E0

n, bj 〉 = δij . (4.3.4)

The two degenerate eigenvectors |E0
n,bi
〉 are orthogonal because bi �= bj , and they

can always be normalized so that (4.3.4) is satisfied.
The energy eigenvectors on the right-hand side of (4.3.2) are called stabilized

energy eigenvectors. The eigenvector (4.3.3) is also a stabilized energy eigenvector,
and, as will be seen shortly, there are two solutions for c1 and c2: the two solutions
on the right-hand side of (4.3.2). The stabilized energy eigenvectors are the “correct”
energy eigenvectors to zeroth order in the perturbation.

In the following discussion of degenerate perturbation theory, the stabilized
energy eigenvectors and the first-order corrections to the energy will be determined.
The starting point is the exact energy eigenvalue equation,

H |En,d, d〉 = (H0 +H1)|En,d, d〉 , (4.3.5)

which implies

En,d |E0
n,d, d〉 = (H0 +H1)|En,d, d〉 . (4.3.6)
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Taking the scalar product of the above equation with one of the degenerate
eigenvectors |E0

n, bi〉, where i = 1 or 2,

En,d〈E0
n, bi |En,d, d〉 = 〈E0

n, bi |H0 +H1|En,d , d〉. (4.3.7)

Using the fact that H0 is hermitian and that

H(0)|E0
n, bi〉 = E0

n|E0
n, bi〉 , (4.3.8)

where E0
n is the degenerate energy eigenvalue, (4.3.7) can be written in the desired

form,

(En,d − E0
n)〈E0

n, bi |En,d , d〉 = 〈E0
n, bi |H1|En,d, d〉 . (4.3.9)

When energy eigenvalues are calculated only to first order in the perturbation and the
eigenvectors only to zeroth order, (4.3.9), which is essentially the same as (4.2.10),
is the fundamental equation in degenerate, stationary perturbation theory.

Zeroth-Order Approximation
The zeroth-order approximation is obtained by setting H1 = 0. Thus,

En,d → E0
n (4.3.10)

and, as indicated in (4.3.3), the “exact” eigenvector |En,d , d〉 is a linear combination
of the unperturbed, degenerate eigenvectors

|En,d , d〉 → c1|E0
n, b1〉 + c2|E0

n, b2〉 ≡ |E0
n, d〉 . (4.3.11)

The constants c1 and c2 remain unknown for the moment but will be determined by
the first-order approximation.

First-Order Approximation
The energy will now be determined to first-order in the perturbation and, by
calculating the constants c1 and c2 in the above equation, the energy eigenvectors
will be determined to zeroth-order. The first-order approximation E

(1)
n,d for energy is

obtained by replacing the exact energy eigenvector |En,d, d〉 in (4.3.9) by its zeroth-
order approximation |E0

n, d〉 as given in (4.3.11). This is the same approximation
made to obtain the first-order approximation for energy in the previous section.
Making the indicated substitution, (4.3.9) becomes

(E
(1)
n,d − E0

n)〈E0
n, bi |E0

n, d〉 = 〈E0
n, bi |H1|E0

n, d〉 . (4.3.12)

The above equation corresponds to the first-order approximation (4.2.19) in the
previous section. Taking the index i = 1 in the above equation, using the explicit
expression for |E0

n, d〉 as given in (4.3.11), and recalling from (4.3.4) that the
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unperturbed energy eigenvectors are orthonormal, (4.3.12) becomes

(E
(1)
n,d − E0

n)c1 = 〈E0
n, b1|H1|[c1|E0

n, b1〉 + c2|E0
n, b2〉] . (4.3.13a)

Similarly, taking the index i = 2 in (4.3.12),

(E
(1)
n,d − E0

n)c2 = 〈E0
n, b2|H1|[c1|E0

n, b1〉 + c2|E0
n, b2〉] . (4.3.13b)

Introducing the notation

〈E0
n, bi |H1|E0

n, bj 〉 ≡ 〈H1〉ij , (4.3.14)

Equation (4.3.13) can be written in the desired form:

(E
(1)
n,d − E0

n)c1 = c1〈H1〉11 + c2〈H1〉12 , (4.3.15a)

(E
(1)
n,d − E0

n)c2 = c1〈H1〉21 + c2〈H1〉22 . (4.3.15b)

Writing the two equations in matrix form,

(

E
(1)
n,d − E0

n − 〈H1〉11 −〈H1〉12

−〈H1〉21 E
(1)
n,d − E0

n − 〈H1〉22

)(

c1

c2

)

= 0 . (4.3.16)

The matrix equation has a non-trivial solution (c1 = c2 = 0 is the trivial solution)
only if the determinant of the above matrix vanishes,

∣
∣
∣
∣
∣

E
(1)
n,d − E0

n − 〈H1〉11 −〈H1〉12

−〈H1〉21 E
(1)
n,d − E0

n − 〈H1〉22

∣
∣
∣
∣
∣
= 0 . (4.3.17)

Note that H1 = H
†
1 , which implies

〈H1〉12 = 〈H1〉∗21 . (4.3.18)

Evaluating the determinant and then using the quadratic formula, the first-order
approximation for energy is obtained (Problem 4.15):

E
(1)
n,d = E0

n +
1

2

(

〈H1〉11 + 〈H1〉22 ±
√

(〈H1〉11 − 〈H1〉22)2 + 4|〈H1〉12|
)2

.

(4.3.19)

From the above formula, it follows that there are two solutions for the first-order
approximation E

(1)
n,d unless 〈H1〉11 = 〈H1〉22 and 〈H1〉12 = 0. When a small
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perturbation is applied, the energy levels of the two unperturbed degenerate states
are shifted by different amounts and the degeneracy is removed except when the
above two equalities are satisfied.

Substituting the expression for E
(1)
n,d as given in (4.3.19) into (4.3.16) (Prob-

lem 4.15),

2〈H1〉21c1 =
(

〈H1〉11 − 〈H1〉22 ±
√

(〈H1〉11 − 〈H1〉22)2 + 4|〈H1〉12|2
)

c2 .

(4.3.20)

If the matrix element 〈H1〉12 �= 0, the two unnormalized, stabilized energy
eigenvectors corresponding, respectively, to the two energies in (4.3.19) are

|E0
n, d〉 = c2

2〈H1〉21

(

〈H1〉11 − 〈H1〉22 ±
√

(〈H1〉11 − 〈H1〉22)
2 + 4|〈H1〉12|2

)

|E0
n, b1〉

+ c2|E0
n, b2〉 . (4.3.21)

As can be readily verified, the above two stabilized energy eigenvectors are
orthogonal (Problem 4.16).

If the matrix element 〈H1〉12 = 0, which also implies 〈H1〉21 = 0, then the two
equations in (4.3.16) become ,

(E
(1)
n,d − E0

n − 〈H1〉11)c1 = 0 , (4.3.22a)

(E
(1)
n,d − E0

n − 〈H1〉22)c2 = 0 . (4.3.22b)

There are two solutions to (4.3.22): The first solution is obtained by requiring that
the term in parenthesis in (4.3.22a) and c2 in (4.3.22b) be zero. The second solution
is obtained by requiring that c1 in (4.3.22a) and the term in parenthesis in (4.3.22b)
be zero. The energies and the corresponding stabilized energy eigenvectors are

Energy Stabilized Energy Eigenvector

E
(1)
n,d = E0

n + 〈H1〉11 |E0
n, b1〉 (4.3.23a)

E
(1)
n,d = E0

n + 〈H1〉22 |E0
n, b2〉 (4.3.23b)

When the matrix element 〈H1〉12 = 0, the original degenerate vectors |E0
n, b1〉 and

|E0
n, b2〉 are the stabilized energy eigenvectors, and the first-order corrections to

energy are identical to those obtained from the formula (4.2.20).
Note that if 〈H1〉12 = 0 and 〈H1〉11 = 〈H1〉22, the stabilized energy eigenvectors

are degenerate to first-order in the perturbation. The constants c1 and c2 in (4.3.22)
are then arbitrary, so any linear combination of |E0

n, b1〉 and |E0
n, b2〉 is a stabilized

energy eigenvector.
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Example 4.3.1 Consider the Hamiltonian H = H0 +H1 where

H0 = S2

2I
, H1 = −g

q

2m
B1S1 .

Determine the stabilized energy eigenvectors and the corresponding energies to first
order in the perturbation H1 for spin s = 1/2.

Solution This problem can be solved exactly by using the energy eigenstates
|s= 1/2, s1=±1/2〉, but it will first be solved using the basis |s= 1/2, s3=±1/2〉
to illustrate how the formalism of degenerate perturbation theory is applied.

The vectors |s = 1/2, s3 = 1/2) and |s = 1/2, s3 = −1/2) are both
eigenvectors of H0 with an energy eigenvalue h̄2s(s + 1)/2I = 3h̄2/8I . The
stabilized energy eigenvector |E0〉 is chosen to be of the form

|E0〉 = c1|1/2 , 1/2〉 + c2|1/2 , −1/2〉 .

To calculate the required matrix elements of H1, note that

J1 = 1

2
[J1 + iJ2]+ 1

2
[J1 − iJ2] = 1

2
(J+ + J−) .

Then, for example,

〈H1〉12 = 〈1/2, 1/2| − g
q

2m
B1J1|1/2,−1/2〉 ,

= −g
q

2m
B1〈1/2, 1/2|1

2
(J+ + J−)|1/2,−1/2〉 .

With the aid of (2.3.43) ,

〈H1〉12 = −gqh̄

4m
B1 .

In a similar fashion,

〈H1〉11 = 〈H1〉22 = 0, 〈H1〉21 = 〈H1〉∗12 = −
gqh̄

4m
B1 .

Using the above matrix elements, (4.3.16) becomes

(

E
(1)
s,s1
− E0

s
gqh̄
4m

B1
gqh̄
4m

B1 E
(1)
s,s1
− E0

s

)(

c1

c2

)

= 0 .
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The energy eigenvalues are found by setting the determinant of the above matrix to
zero,

E(1)
s,s1

= E0
s ±

gqh̄

4m
B1 = 3h̄2

8I
± gqh̄

4m
B1 .

To obtain the stabilized energy eigenvectors, the above values for E
(1)
s,s1 are

substituted into the matrix equation yielding

±gqh̄

4m
B1 c1 + gqh̄

4m
B1 c2 = 0 , or c2 = ∓c1 .

Taking the top sign and then the bottom sign, the energy eigenvalues and the
corresponding stabilized energy eigenvectors are as follows:

Energy Stabilized Energy Eigenvector

E
(1)
s,s1

= 3h̄2

8I
+ gqh̄

4m
B1

1√
2
[|1/2, 1/2〉 − |1/2,−1/2〉]

E
(1)
s,s1

= 3h̄2

8I
− gqh̄

4m
B1

1√
2
[|1/2, 1/2〉 + |1/2,−1/2〉]

As can be readily checked (Problem 4.17), the stabilized energy eigenvectors are
the eigenvectors |s = 1/2, s1 = ±1/2〉 that satisfy

S1|s = 1/2, s1 = ±1/2〉 = ±h̄(1/2)|s = 1/2, s1 = ±1/2〉.

That is,

|s = 1/2, s1 = ±1/2〉 = 1√
2
[|1/2, 1/2〉 ± |1/2,−1/2〉] .

The formulas for energy that have been derived to first order in H1 are actually exact
as can be immediately verified using the basis |s, s1〉.

In the previous example (4.3.19) and (4.3.21) could have been used, respectively,
to determine the energy eigenvalues E

(1)
n and the stabilized energy eigenvectors.

Instead (4.3.16) was employed, which incorporates both (4.3.19) and (4.3.21),
is easy to remember, and is readily generalized to the case where there are N

degenerate eigenvectors of H0.
If there are N degenerate eigenvectors of H0, a stabilized energy eigenvector

|E0
n, d〉 is of the form

|E0
n, d〉 =

N
∑

j=1

cj |E0
n, bj 〉. (4.3.24)
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Substituting the above equation into (4.3.9),

(E
(1)
n,d − E0

n)〈E0
n, bi |

⎡

⎣

N
∑

j=1

cj |E0
n, bj 〉

⎤

⎦ = 〈E0
n, bi |H1|

⎡

⎣

N
∑

j=1

cj |E0
n, bj 〉

⎤

⎦ .

(4.3.25)

By taking j = 1, 2, . . . , N in (4.3.25), N equations are obtained that can be written
as the matrix

⎛

⎜
⎜
⎜
⎜
⎝

E
(1)
n,d − E0

n − 〈H1〉11 −〈H1〉12 −〈H1〉13 . . .

−〈H1〉21 E
(1)
n,d − E0

n − 〈H1〉22 −〈H1〉23 . . .

−〈H1〉31 −〈H1〉32 E
(1)
n,d − E0

n − 〈H1〉33 . . .

...
...

...
. . .

⎞

⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

c1

c2

c3
...

⎞

⎟
⎟
⎟
⎠
= 0 .

(4.3.26)

Example 4.3.2 The Hamiltonian for a harmonic oscillator in two-dimensional
space is

H0 =
P 2

x + P 2
y

2m
+ 1

2
k(Q2

x +Q2
y) .

Determine the stabilized energy eigenfunctions and the first-order corrections to
energy for the degenerate energy eigenvectors of H0 with energy 3h̄ω when the
system experiences the perturbation

H1 = gPx Qy .

Solution Since H0 separates, all energy eigenvectors |nx, ny〉 of H0 and their
corresponding energies E0

n are

|nx, ny〉 = |nx〉 ⊗ |ny〉 , E0
nx,ny

= h̄ω

(

nx + 1

2

)

+ h̄ω

(

ny + 1

2

)

,

where |nx〉 and |ny〉 are harmonic oscillator energy eigenvectors for the harmonic
oscillator in one-dimensional spaces spanned by x and y, respectively, and nx and ny

independently take the values 0, 1, 2, . . . . The three degenerate states with energy
E0 = 3h̄ω are, therefore,

|1, 1〉 = |1〉 ⊗ |1〉 , |0, 2〉 = |0〉 ⊗ |2〉 , and |2, 0〉 = |2〉 ⊗ |0〉 .
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Stabilized solutions |E(0)) are of the form

|E(0)) = c1|1, 1〉 + c2|0, 2〉 + c3|2, 0〉 .

The matrix elements of H1 are readily calculated using (1.2.51) to rewrite Px in
terms of raising operator a

†
x and lowering operator ax that act in the space |nx〉 and

writing Qy in terms of a
†
y and ay that act in the space |ny〉:

H1|nx, ny〉 = ig

√

mωh̄

2
(a†

x − ax)|nx〉 ⊗
√

h̄

2mω
(a†

y + ay)|ny〉 .

With the aid of (1.2.49) and (1.2.50),

H1|nx, ny〉 = i

2
gh̄[√nx + 1

√

ny + 1|nx+1, ny+1〉+√nx + 1
√

ny |nx+1, ny−1〉

− √nx

√

ny + 1|nx − 1, ny + 1〉 − √nx
√

ny |nx − 1, ny − 1〉] .

The matrix elements of H1 are now readily calculated with the result

〈H1〉11 = 〈H1〉22 = 〈H1〉33 = 0 ,

〈H1〉12 = 〈H1〉31 = i√
2
gh̄ ,

〈H1〉21 = 〈H1〉13 = − i√
2
gh̄ ,

〈H1〉23 = 〈H1〉32 = 0 .

For this specific problem, the matrix equation (4.3.26) becomes

⎛

⎜
⎜
⎜
⎜
⎜
⎝

E(1) − E0 − i√
2
gh̄

i√
2
gh̄

i√
2
gh̄ E(1) − E0 0

− i√
2
gh̄ 0 E(1) − E0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎝

c1

c2

c3

⎞

⎟
⎟
⎟
⎟
⎟
⎠

= 0 .

Equating the determinant of the above matrix to zero, the following equation is
obtained for the energy eigenvalues:

[

E(1) − E0
] [

((E(1) − E0)2 − (gh̄)2
]

= 0
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The three normalized stabilized eigenvectors are obtained by substituting each of
the three solutions for energy to the above equation into the matrix equation one-at-
a-time. The results are tabulated below (Problem 4.18):

Energy Stabilized Energy Eigenvector

3h̄ω + gh̄
1√
2

[

|1, 1〉 − i√
2
|0, 2〉 + i√

2
|2, 0〉

]

3h̄ω
1√
2

[|0, 2〉 + |2, 0〉]

3h̄ω − gh̄
1√
2

[

|1, 1〉 + i√
2
|0, 2〉 − i√

2
|2, 0〉

]

Note that all three values of E(1) have different values so the perturbation has
completely removed the degeneracy.

As the number of degenerate energy eigenvectors increases, it becomes increas-
ingly time-consuming to evaluate the determinant of the matrix in (4.3.26) and find
the stabilized energy eigenvectors. If a set of operators {B,C, . . . } can be found such
that {H0, B,C, . . . } is a complete set of commuting operators and {H,B,C, . . . } is
also a complete set of commuting operators, then the situation has been reduced to
that of the previous section, and the matrix calculation has been avoided entirely.
However, even if it is possible to find only a single operator B that commutes with
both H0 and H , where H0 and B now do not constitute a complete set of commuting
operators, the matrix calculation simplifies significantly. Since both the eigenvectors
of H and H0 can be chosen as eigenvectors of B, the stabilized eigenvectors of
H with an eigenvalue bi of B can only be a linear combination of degenerate
eigenvectors of H0 with the same eigenvalue bi . As will be seen in the following
subsection, the matrix equation then reduces to several equations involving smaller
matrices that are much easier to solve.

4.3.1 The Stark Effect

The effect of a uniform, static electric field E on an atomic state was first noted by
Stark (1913) and provides an excellent example for the usefulness of perturbation
theory. Here the effect of the electric field is determined on the ground state of the
hydrogen atom (n = 1), which is non-degenerate, and the first excited state of the
hydrogen atom (n = 2), which is four-fold degenerate.

The Hamiltonian of the hydrogen atom is

H0 = p2

2μ
− e2

4πε0

1

Q
, (4.3.27)
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and describes the relative motion of an electron and proton interacting via the
Coulomb force. In the above formula μ is the reduced mass of the electron and
proton.

To obtain the operator for the interaction of the electron and proton with the
electric field E, first note that the dipole moment d of the hydrogen atom is

d = −er , (4.3.28)

where e is the charge on the proton and r is the position of the electron relative
to the proton. (The dipole moment d is defined to point from the negative to the
positive charge while r points from the proton to the electron, accounting for the
minus sign in the above equation.) The classical energy of an electric dipole in an
electromagnetic field E is given by

Uclassical = −d · E . (4.3.29)

Combining the previous two equations and taking the electric field to point along
the z axis,

Uclassical = −(−er) · E = e|E|r cos θ = e|E|z . (4.3.30)

From the correspondence principle, the quantum mechanical interaction Hamilto-
nian is

H1 = Uquantum = e|E|Q3 , (4.3.31)

where Q3 is the 3-component of the relative position operator of the electron with
respect to the proton. Including the effect of the electric field, the Hamiltonian H is

H1 = H0 + e|E|Q3 . (4.3.32)

Neglecting spin, the eigenvalues of H0 are the energy levels of the hydrogen
atom as given in (3.2.56). (There the energy eigenvalues are denoted by En instead
of by E0

n.) Each energy eigenfunction is a product of a radial wave function and a
spherical harmonic. The first few radial wave functions and spherical harmonics are
tabulated, respectively, in Tables 3.1 and 3.2.

The energy shift of the ground state resulting from the perturbation (4.3.31) is
first calculated. If perturbation theory is to be applicable, (4.2.28) must be satisfied,
which implies that the magnitude of the electric field is small (|E| ≤ 103N/C).
Since the ground state |n = 1, � = 0,m = 0〉 of the hydrogen atom is non-
degenerate, the energy to first order in the perturbation can be calculated using
(4.2.19):

E(1) = E0 + 〈n = 1, � = 0,m = 0| e |E|Q3|n = 1, � = 0,m = 0〉 . (4.3.33)
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Converting the above matrix element into an integral,

E(1) = E0 + e|E|
∫ ∞

−∞
d3xψ∗1,0,0(x)zψ∗1,0,0(x)

= E0 + e|E|
∫ ∞

−∞
d3x[ψ1,0,0(x)]2z . (4.3.34)

Making the substitution z → −z, the integral is found to equal the negative of
itself and is therefore zero. Consequently, there is no change in the energy level to
first-order in the perturbation.

To second-order in the perturbation, the energy E(2) is given by (4.2.23),

E
(2)
n=1 = E0

n=1 +
∑

n′,�′,m′ �=1,0,0

|〈n = 1, � = 0,m = 0|e |E|Q3|n′, �′,m′〉|2
E0

n=1 − E0
n′

.

(4.3.35)

To evaluate the matrix element, it is converted into an integral,

〈1, 0, 0|e|E|Q3|n′, �′,m′〉 = e|E|
∫ ∞

0
drr2

∫ 2π

0
dφ

∫ π

0
dθ sin θψ1,0,0(x)zψn′,�′,m′(x) .

(4.3.36)

Rewriting the hydrogen atom wave functions in terms of the radial wave functions
Rn,�(r) and spherical harmonics Ym

� (θ, φ) as given, respectively in Tables 3.1
and 3.2,

〈1, 0, 0|e|E|Q3|n′, �′,m′〉

= e|E|
∫ ∞

0
drr3R∗1,0(r)Rn′,�′(r)

∫ 2π

0
dφ

∫ π

0
dθ sin θ

[

cos θY
∗0
0 (θ, φ)Ym′

�′ (θ, φ)
]

,

(4.3.37)

where z = r cos θ has been used. From Table 3.2,

cos θ Y
∗0
0 (θ, φ) = cos θ

1

2
√

π
= 1√

3

[ √
3

2
√

π
cos θ

]

= 1√
3
Y
∗0
1 (θ, φ) . (4.3.38)

Substituting the above relation into (4.3.37) and then using the orthonormality
relation

∫ 2π

0
dφ

∫ π

0
dθ sin θY

∗m
� (θ, φ)Ym′

� (θ, φ) = δ�,�′δm,m′ , (4.3.39)
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It follows that

〈1, 0, 0|e|E|Q3|n′, �′,m′〉

= e|E|
∫ ∞

0
drr3R∗1,0(r)Rn′,�′(r)

∫ 2π

0
dφ

∫ π

0
dθ sin θ

1√
3
Y
∗0
1 (θ, φ)Ym′

�′ (θ, φ)

= e|E|√
3

∫ ∞

0
drr3R∗1,0(r)Rn′,�′(r)δ�′,�δm′,0 . (4.3.40)

With the aid of the above equation, (4.3.35) becomes

E
(2)
n=1 = E0

n=1 +
∞
∑

n′=2

e2|E|2
3

[∫∞
0 drr3R∗1,0(r)Rn′,1(r)

]2

E0
n=1 − E0

n′
. (4.3.41)

The integral in the above equation decreases rapidly as the values of n increase with
the result that the infinite series converges after summing a relatively small number
of terms. Evaluating the first two terms using the explicit expressions for Rn,�(r) in
Table 3.1,

E
(2)
n=1 = E0

n=1 − |E|24πε0r
3
B

[
218

311 +
38

215 + . . .

]

= E0
n=1 − |E|24πε0r

3
B [1.48+ .20+ . . .] . (4.3.42)

An exact calculation3 yields the result

En=1 = E0
n=1 −

9

4
|E|2 4πε0r

3
B . (4.3.43)

In Problem 4.20 an approximate method is discussed for summing the series that
yields a coefficient−2.39 in (4.3.43) instead of the exact result −9/4 = −2.25.

As has just been shown, in the presence of an uniform, static electric field, the
lowest-order, non-zero energy shift is proportional to the square of the electric field
so the effect is called the quadratic Stark effect.

Attention is now directed to the first excited energy level of the hydrogen atom,
which is four-fold degenerate. The four zeroth-order eigenvectors are

|n = 2, � = 1,m = 1〉, |n = 2, � = 1,m = −1〉,
|n = 2, � = 1,m = 0〉, |n = 2, � = 0,m = 0〉. (4.3.44)

3Epstein, Phys. Rev. 28, 695 (1926); Wentzel, Zeits. fur Phys. 38, 527 (1926); Waller, ibid. 38, 640
(1926); Van Vleck, Proc. Nat. Acad. Sci. 12, 662 (1926).
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Since the energy levels are degenerate, to simplify the calculation one or more
operators are sought that commute with both H0 and H1. Because the external
field points in the z- or 3-direction, the “exact” Hamiltonian remains invariant under
rotations about the z axis but does not remain invariant under rotations about an
arbitrary axis. Therefore, H commutes with L3 but not with L2,

[L3,H ] = 0 ,
[

L2,H
]

�= 0 . (4.3.45)

Equation (4.3.45) can be checked explicitly in the position representation where the
above two equations become, respectively,

[

−ih̄
∂

∂φ
, e|E|r cos θ

]

= 0 , (4.3.46a)

[

−h̄2
{

1

sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

+ 1

sin2 θ

∂2

∂φ2

}

, e|E|r cos θ

]

�= 0 . (4.3.46b)

Because H commutes with L3, it is possible to choose eigenstates of H that are also
eigenstates of L3. Since only one of the zeroth-order eigenvectors has an eigenvalue
m = 1 of L3 it must be a stabilized eigenvector. Similarly, the single eigenvector
with m = −1 is also a stabilized eigenvector. Once the zeroth-order approximation
for an eigenvector of H is known, the formalism of Sect. 4.2 can be used to calculate
the energy shifts. From (4.2.20)

E
n=2,m=±1 = E0

n=2 + 〈n = 2, � = 1,m = ±1|e|E|Q3|n = 2, � = 1,m = ±1〉 .
(4.3.47)

Converting the above matrix element into an integral,

En=2,m=±1 = E0
n=2 + |e|E|

∫ ∞

0
d3x|ψ2,1,±1(x)|2z . (4.3.48)

By making the substitution z →−z, the above integral is found to equal the negative
of itself and is therefore zero. To first-order, the degeneracy is not removed for states
with m = ±1.

Because there are two eigenvectors of H0 with m = 0, degenerate perturbation
theory must be used to determine the stabilized m = 0 eigenvectors. The calculation
is begun by writing a stabilized eigenvector with m = 0 in the form,

|E0
n=2,m=0〉 = c1|n = 2, � = 1,m = 0〉 + c2|n = 2, � = 0,m = 0〉 . (4.3.49)
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The diagonal matrix elements of H1 are equal to zero,

〈H1〉11 = 〈n = 2, � = 1,m = 0|e|E|Q3|n = 2, � = 1,m = 0〉 = 0 , (4.3.50a)

〈H1〉22 = 〈n = 2, | = 0,m = 0|e|E|Q3|n = 2, | = 0,m = 0〉 = 0 , (4.3.50b)

for the same reason the diagonal matrix elements in (4.3.48) are zero. The off-
diagonal matrix elements are calculated as follows:

〈H1〉∗21 = 〈H1〉12 = 〈n = 2, � = 1,m = 0|e|E|Q3|n = 2, � = 0,m = 0〉 .
(4.3.51)

Converting the matrix element into an integral,

〈H1〉∗21 = 〈H1〉12 =
∫ ∞

−∞
d3xψ∗2,1,0(x) e |E| z ψ2,0,0(x〉 . (4.3.52)

Writing the hydrogen atom wave functions in the factored form ψn,�,m(x) ≡ Rn,�(r)

×Ym
� (θ, φ),

〈H1〉∗21 = 〈H1〉12

=
∫ ∞

−∞
drr2

∫ π

0
dθ sin θ

∫ 2π

0
dφR∗2,1(r)Y

∗0
1 (θ, φ)e|E|r cos θR2,0(r)Y

0
0 (θ, φ).

(4.3.53)

The explicit expressions for Rn,�(r) and Ym
� (θ, φ) are given, respectively, in

Tables 3.1 and 3.2,

〈H1〉∗21 = 〈H1〉12 =
∫ ∞

−∞
drr2

∫ π

0
dθ sin θ

∫ 2π

0
dφ

1

4
√

2π

1

(rB)3/2)

r

rB
e−r/2rB

× cos θ e|E|r cos θ
1

4
√

2π

1

(rB)3/2)

(

2− r

rB

)

e−r/2rB = 3e|E|rB . (4.3.54)

For the problem being solved, the matrix equation (4.3.26) becomes

(

E(1) − E0 −3e|E|rB
−3e|E|rB E(1) − E0

)(

c1

c2

)

= 0 . (4.3.55)

Equating the determinant of the above matrix to zero, the equation for the energy
eigenvalues is

(E(1)−E0)2−〈−3e|E|rB〉2 = 0, implying E(1) = E0±3e|E|rB . (4.3.56)
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Substituting the above expressions for E(1) into (4.3.55), the corresponding stabi-
lized eigenvectors are found. The energies and corresponding stabilized eigenvec-
tors, two of which were obtained without using degenerate perturbation theory, are
listed below:

Energy Stabilized Energy Eigenvector

E(1) = E0 + 3e|E|rB 1√
2
[|n = 2, � = 1,m = 0〉 − |n = 2, � = 0,m = 0〉]

E(1) = E0 − 3e|E|rB 1√
2
[|n = 2, � = 1,m = 0〉 + |n = 2, � = 0,m = 0〉]

E(1) = E0 |n = 2, � = 1,m = 1〉
E(1) = E0 |n = 2, � = 1,m = −1〉

(4.3.57)

The factor 1/
√

2 has been chosen so that the stabilized eigenvectors are normalized,
and overall phase factors have been chosen arbitrarily.

The entire problem could have been solved using degenerate perturbation theory
by writing a stabilized eigenvector in the form

|E0
n〉 = c1|2, 1, 0〉 + c2|2, 0, 0〉 + c3|2, 1, 1〉 + c4|2, 1,−1〉 . (4.3.58)

The diagonal matrix elements of H1 vanish as discussed previously. Also, since
L3 commutes with H1, all the off-diagonal matrix elements vanish unless both
eigenvectors have the same value of m as discussed in Example 4.2.1 on page 216.
Using (4.3.54), the matrix equation corresponding to (4.3.26) is then

⎛

⎜
⎜
⎝

E(1) − E0 3e|E|rB 0 0
3e|E|rB E(1) − E0 0 0

0 0 E(1) − E0 0
0 0 0 E(1) − E0

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

c1

c2

c3

c4

⎞

⎟
⎟
⎠
= 0 . (4.3.59)

The energies and corresponding stabilized eigenfunctions can be calculated from
the above equation (Problem 4.21).

To summarize, in the presence of an uniform, static electric field, to first order
the energy level E0

n=2 of the hydrogen atom splits into three energy levels:

E
(1)
n=2 −→

⎧

⎪⎪⎨

⎪⎪⎩

E0
n=2 + 3erB |E|, m = 0

E0
n=2, m = ±1

E0
n=2 − 3erB |E|, m = 0

(4.3.60)
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The two energy levels with m = 0 are non-degenerate while the levels with m = ±1
are degenerate. The energy shifts are linear in the electric field and are, therefore,
called the linear Stark effect.

4.4 Summary

The description of any physical system is only approximate, and only in a limited
number of cases can the approximate mathematical description be solved exactly.
The most frequently used approximation technique is to split the Hamiltonian
H , which only provides an approximate mathematical description of the physical
system, into two parts,

H = H0 +H1 .

The eigenvalues and eigenvectors of H0 are assumed to be known, and H1 is
a “small,” time-independent or stationary perturbation. Because the effect of H1
is “small” compared with that of H0, the eigenvalues E0

n and eigenvectors |E0
n〉

of H0 are almost, respectively, the eigenvalues En and eigenvectors |En〉 of H .
Stationary perturbation theory provides a systematic method for calculating the
small differences En − E0

n and |En〉 − |E0
n〉.

The eigenvector of H0 that is the best approximation to each eigenvector of H is
known for either of the following two cases:

Case I A hermitian operator B is known that satisfies

[B,H0] = [B,H ] = 0 ,

where H0 and B form a complete set of commuting observables as do H and B.

Case II The eigenvalues of H0 are non-degenerate.
For the above two cases there are two fundamental equations:

En = E0
n +

〈E0
n|H1|En〉
〈E0

n|En〉 ,

|En〉 = |E0
n〉 +

[

〈E0
n|En〉 − 1

]

|E0
n〉 +

∑

n′ �=n

|E0
n′ 〉
〈E0

n′ |H1|En〉
En − E0

n′
.

The two fundamental equations can be systematically solved for the first-order
corrections resulting from H1, the second-order corrections and so forth. Of special
note are the formulas for the energy eigenvalues and energy eigenvectors of H that
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include first-order corrections resulting from H1. They are, respectively,

E(1)
n = E0

n + 〈E0
n|H1|E0

n〉 ,

|E(1)
n 〉 = |E0

n〉 +
∑

n′ �=n

|E0
n′ 〉
〈E0

n′ |H1|E0
n〉

E0
n − E0

n′
.

Degenerate, stationary perturbation theory must be used for the remaining case:

Case III The energy eigenvalues of the free Hamiltonian H0 are degenerate and no
hermitian operator B is known that commutes with both H0 and H such that H0 and
B form a complete set of commuting observables.

The primary difference between Cases I and II and Case III is the following: For
Cases I and II the eigenvector |En,b, bi〉 of H is almost the same as the eigenvector
|E0

n, bi〉 of H0. However, for Case III, if there are m degenerate eigenvectors
|E0

n, bi〉, i = 1, 2, . . . ,m, of H0, each of the m corresponding eigenvectors of H

is almost the same as some linear combination of the m degenerate eigenvectors
|E0

n, bi〉. Each linear combination of the |E0
n, bi〉 that is almost an eigenvector of H

is called a stabilized energy eigenvector |E0
n,d, d〉 and is written in the form

|E0
n,d , d〉 =

m
∑

i=1

ci |E0
n, bi〉 .

The constants ci and the expressions for energy E
(1)
n that include the first-order

corrections resulting from H1 are determined by the matrix equation

⎛

⎜
⎜
⎜
⎜
⎝

E
(1)
n,d −E0

n − 〈H1〉11 −〈H1〉12 −〈H1〉13 . . .

−〈H1〉21 E
(1)
n,d −E0

n − 〈H1〉22 −〈H1〉23 . . .

−〈H1〉31 −〈H1〉32 E
(1)
n,d −E0

n − 〈H1〉33 . . .

.

.

.
.
.
.

.

.

.
. . .

⎞

⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

c1

c2

c3
.
.
.

⎞

⎟
⎟
⎟
⎠
= 0 .

In the above equation

〈H1〉ij ≡ 〈E0
n, bi |H1|E0

n, bj 〉 .

The effect of a uniform, static electric field on an atomic state is known as
the Stark effect. The first non-zero shift in the energy level of the ground-state
(n = 1) of the hydrogen atom is calculated from second-order perturbation theory
and is called the quadratic Stark effect because it is proportional to the square of
the magnitude of the electric field. The n = 2 energy levels are originally four-fold
degenerate. Using first-order degenerate perturbation theory, the m = ±1 energy
levels remain unchanged while one of the m = 0 energy levels is shifted upward
and the other downward from the unperturbed levels. Since the shift in energy levels
is proportional to the magnitude of the electric field, the effect is known as the linear
Stark effect.



Problems 243

Problems

For Sect. 4.1.1

4.1 The Hamiltonian of a rotator in a constant magnetic field is given by

H = J2

2I
− g

q

2m
(B1J1 + B2J2) .

(a) Verify that the operator

J ′1 =
1

√

B2
1 + B2

2

(B1J1 + B2J2)

commutes with H .
(b) Verify that J2 = J′2, where

J ′1 =
1

√

B2
1 + B2

2

(B1J1+B2J2), J ′2 =
1

√

B2
1 + B2

2

(B2J1−B1J2), J ′3 = J3 .

(c) Verify that the J ′i satisfy the algebra of angular momentum.
(d) Using a basis that is an eigenstate of both J′2 and J ′1, determine the exact energy

levels as a function of the eigenvalues of J′2 and J ′1.

For Sect. 4.2

4.2 Consider the following Hamiltonian in one-dimensional space:

H = P 2

2m
+ 1

2
kQ2 + 1

2
bQ2, b % k .

(a) Using your knowledge of solutions to the harmonic oscillator, write an exact
expression for the energy eigenvalues En of H . Expand En in powers of b/k

neglecting terms of order (b/k)n, n > 3.

Now let H0 = P 2

2m
+ 1

2kQ2 and treat H1 = 1
2bQ2 as a perturbation.

(b) Using second-order stationary perturbation theory, calculate E
(2)
n . Verify that it

agrees with the answer in (a) to the required order in b/k.
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(c) Using first-order stationary perturbation theory, express |E(1)
n 〉 in terms of |E0

n〉.
For the cases n = 1 and n = 2, verify that

|E(1)
0 〉 = |E0

0〉 −
1

4
√

2

b

k
|E0

2〉 ,

|E(1)
1 〉 = |E0

1〉 −
1

4

√

3

2

b

k
|E0

3〉 .

(d) The exact solutions |E0〉 and |E1〉 of H satisfy

|E1〉 = a†|E0〉 .

Verify that the solutions in (c) are consistent with the above equation to
order b/k.

4.3 Let the Hamiltonian of a rotator be given by

H = J2

2I
+ αJ3 + βJ1 ,

where α and β are constants with α � β. Let |j,m〉 be an eigenvector of J2 and J3
with respective eigenvalues h̄2j (j + 1) and h̄m.

(a) Treat H1 = βJ1 as a perturbation and determine the energy eigenvalues of the
unperturbed Hamiltonian,

H0 = J2

2I
+ αJ3 .

(b) Using stationary perturbation theory with |j,m〉 as the unperturbed basis, to
lowest order in β calculate the first non-zero contribution of H1 = βJ2 to the
energy eigenvalues.

(c) The exact eigenvalues of H can be determined by defining the following
operators:

J ′1 = J1, J ′2 =
1

√

α2 + β2
(βJ3 − αJ1), J ′3 =

1
√

α2 + β2
(αJ3 + βJ1) .

Verify that these “rotated” angular momentum operators satisfy the algebra of
angular momentum and that, in terms of the “rotated” operators,

H = ηJ′2 + λJ ′3 .

Express the constants η and λ in terms of the constants I , α and β.
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(d) Determine the exact eigenvalues of H and verify that they are consistent with
the results obtained in (a) and (b).

4.4 Consider a quantum particle with mass m confined in an infinitely-deep, one-
dimensional, potential well. The potential U(x) is given by

U(x) =

⎧

⎪⎪⎨

⎪⎪⎩

∞ x < −a

0 −a ≤ x ≤ a

∞ x > a

.

The energy eigenvalues E0
n and corresponding normalized eigenfunctions φn(x) are

as follows:

E0
n =

n2π2h̄2

8ma2 and φn(x) = 1√
a

cos
nπx

2a
n = 1, 3, 5, . . .

E0
n =

n2π2h̄2

8ma2
and φn(x) = 1√

a
sin

nπx

2a
n = 2, 4, 6, . . .

A perturbation U ′(x) is applied to the system,

U ′(x) =
{

U0 > 0 −a ≤ x ≤ 0 ,

0 otherwise .

The perturbing potential U ′(x) in the infinitely-deep, rectangular potential well is
shown in Fig. 4.1.

(a) For n = 1, 3, 5, . . . calculate the exact energy levels to first order in the
perturbation U ′(x).

(b) For n = 2, 4, 6, . . . calculate the exact energy levels to first order in the
perturbation U ′(x).

(c) What inequality must U0 satisfy if the first-order perturbation calculation is to
be meaningful?

Fig. 4.1 The perturbing
potential U ′(x) of
Problem 4.4 superimposed on
the infinitely-deep,
rectangular potential well
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4.5 Using stationary perturbation theory calculate the lowest-order correction to the
ground state energy level of a one-dimensional harmonic oscillator as a result of the
perturbation H1 = bQ4.

4.6 Calculate the lowest order correction to the nth energy level of a one-
dimensional harmonic oscillator as a result of the perturbation H1 = bQ2.

4.7 Calculate the lowest order correction to the nth energy level of a one-
dimensional harmonic oscillator as a result of the perturbation H1 = bQ3.

4.8 Using second-order and first-order stationary perturbation theory, respectively,
calculate E

(2)
n and |E(1)

n 〉 for a one-dimensional harmonic oscillator subject to a
perturbation H1 = bP .

4.9 Calculate the energy of the ground state of the hydrogen atom when it is
perturbed by a potential H1 = g/(Q2

x +Q2
y +Q2

z).

4.10 Using first-order perturbation theory calculate the energy eigenvalues and
eigenvectors of the Hamiltonian H = H0 +H1 where

H0 = J2

2I
− g

q

2m
B3J3 and H1 = α(J1)

2 .

4.11

(a) For Example 4.2.4 on page 219 calculate E(1) by letting the “exact” Hamilto-
nian operate on |E(1)〉 that is given in the text.

(b) Verify to the first order in α that |E(1)〉 as given in Example 4.2.4 is an eigenstate
of the operator

B = −g
q

2m
B3J3 + α(J2)

2 .

To first order in α, what is the eigenvalue of B when it acts on |E(1)〉?
4.12 A hydrogen atom experiences a perturbation

〈x|H1|x〉 = g

r2 , g = constant .

(a) Determine two operators that commute with both the free and “exact” Hamilto-
nians.

(b) For n = 2 what are the zeroth-order approximations to the exact energy
eigenfunctions?
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(c) For n = 2 calculate the first-order corrections to energy for each of the energy
eigenfunctions found in (b). The following relation is useful:

∫ ∞

−∞
d3xψ∗n,�,m(x)

1

r2 ψn,�,m(x) = 1

(�+ 1/2)n3r2
B

.

4.13 Derive the second-order perturbation expression for E
(2)
n as given in (4.2.23).

4.14 Derive the second-order perturbation expression for |E(2)
n 〉 as given in

(4.2.24).

For Sect. 4.3

4.15 Beginning with (4.3.16) derive the first-order corrections for the energy
(4.3.19) and the stabilized energy eigenvectors (4.3.21).

4.16 Verify that the two stabilized energy eigenvectors in (4.3.21) are orthogonal.

4.17 Verify that

|s = 1/2, s1 = ±1/2〉 = 1√
2

[|s = 1/2, s3 = 1/2〉 ± |s = 1/2, s3 = −1/2〉] ,

where |s = 1/2, s1 = ±1/2〉 satisfies

S1|s = 1/2, s1 = ±1/2〉 = ± h̄

2
|s = 1/2, s1 = ±1/2〉 .

4.18 In Example 4.3.2 on page 232 substitute the explicit expressions for the energy
eigenvalues E(1) into the matrix equation for c1, c2, and c3 and determine the three
normalized stabilized energy eigenfunctions.

4.19 Using the results from Example 4.3.2, calculate the diagonal matrix elements
of H1 between each of the three stabilized energy eigenvectors. What is the
relationship between the three diagonal matrix elements and the three values for
E(1)? Explain your results.

4.20 Determine an approximate value for the sum in (4.3.35) using the following
method: As shown in the text, the only non-zero matrix elements occur for �′ = 1
and m′ = 0. Writing the first two non-zero terms explicitly,

∑

n′,�′,m′ �=1,0,0

|〈n = 1, � = 0,m = 0|(e|E|Q3)|n′, �′,m′〉|2
E0

n=1 − E0
n′
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= |〈1, 0, 0|(e|E|Q3)|2, 1, 0〉|2
E0

n=1 − E0
n′=2

+ |〈1, 0, 0|(e|E|Q3)|3, 1, 0〉|2
E0

n=1 − E0
n′=3

+
∑

n′=4,�′,m′

|〈1, 0, 0|(e|E|Q3)|n′, �′,m′〉|2
E0

n=1 − E0
n′

.

From (3.2.56), E0
n′ = E0

n=1/n′2. Since the matrix elements rapidly decrease in
magnitude for increasing values of n′, the value of the above sum is changed only
slightly if E0

n′ is neglected in the last term. Thus,

∑

n′,�′,m�=1,0,0

|〈n = 1, � = 0,m = 0|(e|E|Q3)|n′, �′,m′〉|2
E0

n=1 − E0
n′

∼= |〈1, 0, 0|(e|E|Q3)|2, 1, 0〉|2
E0

n=1 − E0
n=2

+ |〈1, 0, 0|(e|E|Q3)|3, 1, 0〉|2
E0

n=1 − E0
n=3

+ 1

E0
n=1

∑

n′=4,�′,m′
|〈1, 0, 0|(e|E|Q3)|n′, �′,m′〉|2.

(a) Show that

∑

n′=4,�′,m′
|〈1, 0, 0|(e|E|Q3)|n′, �′,m′〉|2

= −|〈1, 0, 0|(e|E|Q3)|2, 1, 0〉|2 − |〈1, 0, 0|(e|E|Q3)|3, 1, 0〉|2

+
∑

n′=0,�′,m′
|〈1, 0, 0|(e|E|Q3)|n′, �′,m′〉|2 .

(b) Show that

∑

n′=0,�′,m′
|〈1, 0, 0|(e|E|Q3)|n′, �′,m′〉|2 = |〈1, 0, 0|e|E|2(Q3)

2|1, 0, 0〉 .

Hint: Use the form of (A.4.13) that is appropriate for the hydrogen atom.
(c) Evaluate the following three matrix elements:

〈1, 0, 0|e2|E|2(Q3)
2|1, 0, 0〉

〈1, 0, 0|e|E|(Q3)|2, 1, 0〉
〈1, 0, 0|e|E|Q3|3, 1, 0〉

(d) Use your results from (a), (b), and (c) to determine an approximate value for the
infinite sum in (4.3.35).
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4.21 Beginning with (4.3.59), determine the expressions for E(1) and the corre-
sponding stabilized energy eigenfunctions.

4.22 The Hamiltonian for a harmonic oscillator in two-dimensional space is

H0 =
P 2

x + P 2
y

2m
+ 1

2
k(Q2

x +Q2
y) .

It experiences a perturbation

H1 = gQxQy, g = constant.

Determine the stabilized energy eigenvectors and the first-order corrections to the
energy for the two degenerate eigenvectors of H0 with energy E0 = 2h̄ω.

4.23 For the Hamiltonian H0 and the perturbation H1 of the previous problem,
determine the stabilized energy eigenvectors and the first-order corrections to energy
for the three degenerate eigenvectors of H0 with energy E0 = 3h̄ω.



Chapter 5
Time Evolution of Quantum Systems

5.1 Time Evolution

5.1.1 Introduction

So far only properties such as the structure and spectra of quantum physical systems
have been discussed, properties for which time development is irrelevant and can
thus be ignored. In this chapter properties will be discussed that can be understood
only by taking into account time development.

Experiments with microphysical systems, which were discussed in detail in
Chap. 1, consist of two parts: (1) the preparation procedure that prepares the state
using a macroscopic apparatus, and (2) the registration apparatus that registers or
detects the observable. Although the experimental apparatus in quantum physics
always consists of a preparation apparatus and a registration apparatus, it is not
always possible to divide an experiment into preparation and registration parts in a
unique way. In the experiment with vibrating CO molecules discussed in Sect. 1.3,
the apparatus is represented schematically by Fig. 1.7a and is depicted pictorially in
Fig. 1.7b. A monochromator and a collision chamber with a beam of CO molecules
prepare the state ρ and constitute the preparation apparatus. The state in this specific
experiment is the mixed state ρ = ∑

ρn|En〉〈En|, (1.3.12); however, it could have
also been a pure state |En〉〈En|.

The experiment also consists of the electron multiplier, which is an analyzer and
a counter (detector). The analyzer and counter constitute the registration apparatus.
The counter registers the electrons that have undergone the energy loss Ee − Ee′ =
Em − E0, and the observable that represents this energy loss has been denoted
ΛEm = Λm = |Em〉〈Em|. By changing the magnetic field of the analyzer, the
detector can be tuned so that a specific energy loss can be detected, making it
possible to detect any one of the observables Λ0, Λ1, . . ., or Λm = |Em〉〈Em|.

By setting the energy of the analyzer to Em−E0, the observable ΛEm in the state
ρ of the CO molecules prepared by the preparation apparatus of this experiment is
registered. As stated in Fundamental Postulate II of quantum theory, the quantities
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measured in quantum physics are the Born probabilities of an observable Λ. In this
case Λ = Λm = |Em〉〈Em| in a state ρ. These Born probabilities—also called
expectation values of Λm in ρ—are defined in the theory by

ρtheoretical
m = Tr(ρΛm) =Pρ(Λm) , (5.1.1)

and they are measured as ratios of large numbers,

ρ
experimental
m = Number of detector counts with energy loss Em

Number of all detector counts
= Nm

N
. (5.1.2)

The state could be prepared in a pure state ρ = |En〉〈En| where H |En〉 = En |En〉.
If, for example, |En〉 = |E1〉, then ρm = Tr(|E1〉〈E1|Λm〉 = δ1,m. In general the
state operator depends on time, ρ = ρ(t). For the special case of a time-dependent
pure state, ρ(t) = |En〉〈En|, the state vector |En〉 = |En(t)〉 depends on time.

For the specific case of the energy loss experiment, the numbers Nm/N measured
by the detector refer to the state ρ(t = 0), where t = 0 is the time at which the state
is prepared. Nm is the number of electrons that have collided with a CO molecule
in its ground state with energy E0 and bumped up the CO molecule into its m-th
excited state with energy Em. This, of course, happens “all the time” as long as the
monochromator sends a beam of electrons into the collision chamber where it then
collides with the CO molecules. Here “all the time” refers to the time of the clocks in
the laboratory. But each time t1, t2, . . . when an individual CO molecule is bumped
up into the m-th excited state |Em〉 is the initial time t = 0 for the specific excited
state |Em〉 that was created at time ti . From this time t = 0, which is different
for each excited state, the excited CO molecule evolves exponentially in time as
specified by the decaying state |Em(t)〉, t ≥ 0. But the time-dependence of the state
|Em(t)〉 is irrelevant for the energy-loss experiment: what the detector measures is
the number of electrons Nm per time interval Δt . The number of electrons per unit
time Nm/Δt that have lost energy Em−E0 equals the number of the CO molecules
per unit time Nm/Δt that have been elevated to the m-th energy level.

5.2 Time Evolution of States, Observables and Probabilities

To discuss the question of how Born probabilities change in time, Fundamental
Postulates I and II of quantum theory are first reviewed. States and observables are
distinguished as follows: States are described by vectors φ for pure states and by
statistical or density operators ρ (1.3.12) for mixtures. States φ and ρ are prepared
by a preparation apparatus such as an accelerator.

Observables are described by hermitian operators A = A†. An important, special
class of observables are the projection operators Λ = Λ2. If Λ = |ψ〉〈ψ| is a pro-
jector onto the one-dimensional space spanned by ψ , then the vector ψ specifies the
observable Λ. Observables A are registered by a registration apparatus (detector).
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The state vectors φ are elements of a scalar-product space Φ and the
observables A form an algebra of linear operators in this space. Although often
called a Hilbert space, Φ is typically treated as a pre-Hilbert space.1 Each specific
physical system, such as the hydrogen atom or the energy-loss experiment involving
CO molecules discussed in Chap. 1, Sect. 1.3, is associated with a specific linear
space Φ.

The physical quantities in quantum physics are the probabilities. When a physical
system is in the pure state φ, the probability of measuring the observable A in this
state is denoted Pφ(A) and is calculated theoretically as a Born probability,

Pφ(A) = |〈A|φ〉|2 = |〈ψ(t = 0〉An|φ〉|2 . (5.2.1)

In the above equation the subscript n refers to the nth detector that registers the
observable A.

Similarly, when the state is a mixture specified by the statistical or density
operator ρ, the Born probability of measuring the observable A is

Pρ(A) = Tr(Aρ) = Tr(Anρ) . (5.2.2)

Experimentally, either when the physical system is a pure state specified by φ or
a mixture specified by ρ, the probabilities are measured as large count ratios of a
detector, which are the relative frequencies,

Pφ(A) = Nn

N
. (5.2.3)

As in other areas of physics, time development in quantum mechanics can be
described by differential equations. However, in quantum mechanics it is possible
to represent time development in various equivalent ways or in equivalent “pictures.”
The Schrödinger and Heisenberg pictures are two of the more commonly used and
represent the extremes. In the Schrödinger picture, the state is considered to be
time dependent, φ = φ(t) and the observable A or Λ is time independent. In the
Heisenberg picture, the observable is considered to be time dependent, A = A(t)

and Λ = Λ(t), while the state φ is time independent, implying that it remains
unchanged for all time.2

The comparison of the calculated probabilities and the observed counting rates,

Pρ(t)(A) =Pρ(A(t)) � Nn(t)

N
, (5.2.4)

1A pre-Hilbert space is a linear, scalar-product space in which the convergence of infinite sequences
φ1, φ2, . . . φn, φn+1 . . . is not discussed. Often the Schwartz space, a space in which convergence
is defined by an infinite number of norms, is used for Φ.
2The interaction or Dirac picture is a third commonly used picture in which the Hamiltonian H

is split into two parts, H = H0 + H1. The observable A evolves in time with H0, AD(t) =
eiH0 t/h̄AD(0)e−iH0 t/h̄, and the state φ evolves in time with H1, φD(t) = e−iH1 t/h̄φD(0)eiH1 t/h̄.
As must be the case, predictions are the same in each picture: PρD(t)(A

D(t)) = Pρ(t)(A) =
Pρ(A(t)).
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Table 5.1 Relationship among states, observables and probabilities

State ρ (in-state φ+ of
scattering experiment)

Is prepared by A preparation apparatus
(e.g. an accelerator)

Observable A (ψ−
out-observables or
“out-states”)

Is registered by A registration apparatus
(e.g. a detector)

Experimental quantities are
the probabilities of
measuring the observable A

in the state ρ

These probabilities are
calculated theoretically as
Born probabilities

Probabilities are measured
as ratios of large counts of
a detector (“relative
frequencies”)

tests the theoretical prediction Pρ(t)(A) = Pρ(A(t)) and the experimental
observation Nn(t)/N (Table 5.1).3

The theoretical and experimental expressions for probabilities are as follows:

Pρ(Λ(t)) ≡ Tr(Λ(t)ρ(0)) = TrΛ(0)ρ(t))
︸ ︷︷ ︸

theoretical

� Nn/N
︸ ︷︷ ︸

experimental

(5.2.5)

In the special case Λ = |ψ−〉〈ψ−| and ρ = |φ+〉〈φ+|,

Pφ+(ψ−(t)) ≡ |〈ψ−(0〉|φ+(t)〉|2 = |〈ψ−(t)|φ+(0)〉|2
︸ ︷︷ ︸

theoretical

� Nn/N
︸ ︷︷ ︸

experimental

(5.2.6)

The consequences of Fundamental Postulates I and II are as follows: In quantum
physics states are described by density operators, usually denoted by ρ, or, in the
special case ρ = |φ〉〈φ|, by a state vector φ. Observables are described by self-
adjoint operators A = A†, a special case of which are projection operators Λ =
Λ† = Λ2, or by observable vectors ψ if Λ = |ψ〉〈ψ|.

Equation (5.2.6) is a special case of the fundamental postulate (5.2.5) for which
the observable Λ is given, except for a phase factor, by the vector ψ−, and the
state ρ is given by ρ = |φ+〉〈φ+|. The two extreme cases for describing time
evolution are given in Eqs. (5.2.5) and (5.2.6). In the Schrödinger picture, which
can be conjectured from classical wave theory, the time dependence of probabilities
is described by the time evolution of the state vector φ+(t) of the state operator
ρ(t) with the observable Λ remaining unchanged in time. All the time dependence
resides in the state vector φ+(t) so the probability is given by |〈ψ−(0)|φ+(t)〉|2.
The Heisenberg picture, which can be conjectured from classical particle mechanics,
describes the time dependence of the probabilities as the evolution of the observable

3The experimental quantity Nn(t)/N necessarily changes in discrete steps while the theoretical
quantity Pρ(t)(A) =Pρ(A(t)) is a continuous function of t . The comparison between experiment
and theory is in principle approximate, but as the number of events N becomes larger, the
comparison between experiment and theory becomes more accurate.
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Λ(t) with the state ρ fixed in time. All the time dependence resides in the observable
Λ so the probability is given by |〈ψ−(t)|φ+(0)〉|2.

5.3 Time Evolution in Standard Quantum Mechanics

The mathematical axiom in standard quantum mechanics about the space of states
Φstate and the space of observables Φobservable is

Φstate = Φobservable ∈H = Hilbert space . (5.3.1)

If the Hilbert space axiom (5.3.1) is chosen, then the brackets in (5.2.6) are the scalar
products of two vectors ψ,φ ∈H .

Using (5.2.6), the equality Pψ(t)
(φ) =Pψ(φ(t)) implies

|〈φ|ψ(t)〉| = |〈φ(t)|ψ〉| . (5.3.2)

The equality (5.3.2) can be achieved by choosing a unitary operator4 U(t),
−∞ < t < +∞, to describe time translation of the state,

φ → φ(t) = U(t)φ(0) = U(t)φ , (5.3.3)

relative to the observable ψ = ψ(0). In the above equation φ represents the
preparation apparatus (state), and ψ represents the registration apparatus (detector
or observable). Equivalently, one could choose the one-parameter group U†(t) =
U−1(t) of time translation of the observable

ψ → ψ(t) = U†(t) ψ(0) = U†(t) ψ , (5.3.4)

relative to the state φ = φ(0). With this choice the equality (5.3.2) is obvious
because

〈ψ , φ(t)〉 = 〈ψ , U(t)φ〉 = 〈U†(t)ψ , φ〉 = 〈ψ(t) , φ〉 , (5.3.5)

4U(t) possesses the following properties:

U(0) = I ,

U−1(t) = U(−t) = U†(t)

U(t1 + t2) = U(t1)Ut2) = U(t2)U(t1) ; −∞ < t1 , t2 < +∞ .

U(t) is a continuous operator function of the parameter t and is called a one-parameter group of
unitary operators.
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from which (5.3.2) and Pφ(t)(ψ) =Pφ(ψ(t)) follow.
The unitary operator U(t) = eA t can be differentiated to yield an operator A

that is a “generator of the unitary transformation”:

A = dU(t)

dt

∣
∣
∣
∣
t=0

. (5.3.6)

The operator H defined by

H ≡ − h̄

i
A = − h̄

i

dU

dt

∣
∣
∣
∣
t=0
= H † (5.3.7)

is self-adjoint. (See Problem 5.1.) When written in terms of H , U(t) is given by

U(t) = e−iH t/h̄ . (5.3.8)

The factor h̄ is Planck’s constant divided by 2π and has been included to give
H the dimensions of energy. H is then the time-independent Hamiltonian of the
quantum physical system with states that undergo the time evolution U(t). Each
quantum system has an intrinsic Hamiltonian that characterizes the quantum system.
For example, the Hamiltonian H of the vibrating CO molecule in its center of mass
is given by (1.2.10), and the Hamiltonian of a rotator is given by (2.2.30).

If the Hamiltonian is independent of time, the system is said to be conservative.
Using the explicit expression (5.3.8) for U(t) and differentiating the state φ(t) =
U(t)φ(0), which appears in (5.3.3), with respect to time,

ih̄
d

dt
φ(t) = Hφ(t) , (5.3.9)

where φ(0) is the state at time t = 0. Similarly, differentiating the observable
ψ(t) = U†(t)ψ(0), which appears in (5.3.4), with respect to time,

ih̄
d

dt
ψ(t) = −Hψ(t) , (5.3.10)

where ψ(0) is the observable at time t = 0. The usual situation is that the
Hamiltonian H is known in terms of the algebra of observables of the quantum
mechanical system. Then one wants to determine the time evolution of “all” states
φ(t) or “all” observables ψ(t) that fulfill the dynamical equations (5.3.9) or (5.3.10),
respectively. These dynamical equations are introduced as a basic postulate.
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5.3.1 Time Development in the Schrödinger
Picture—Fundamental Postulate Va

A (conservative) physical system has a generator H of time translation that is a
hermitian element of the algebra of observables and is characteristic of the physical
system. The time evolution of the state of the physical system is given by (5.3.3)
where φ is the state of the system at t = 0 and U(t) is given by (5.3.8).

The Schrödinger Picture
For a state vector φ(t), the dynamic equation is the Schrödinger equation:

ih̄
d

dt
φ(t) = Hφ(t) . (5.3.11)

To solve this equation one must provide an initial condition such as the state φ(0)

at t = 0. In the Schrödinger picture the density operator satisfies the von Neumann
equation

ih̄
d

dt
ρ(t) = [H , ρ(t)] , (5.3.12)

that governs the time evolution of an initial state ρ(0) at time t = 0. (See
Problem 5.2.)

However, neither the state vector, the density operator, nor their time evolutions
are observable quantities. The observable quantity is the quantum mechanical
probability for measuring the observable Λ in the state ρ(t):

P(t) = Tr(Λρ(t)) , (5.3.13)

where the observable Λ is kept fixed. For the special case of a pure state ρ(t) =
|φ(t)〉〈φ(t)| and an observable given by Λ = |ψ〉〈ψ|:

P(t) = |〈ψ|φ(t)〉|2 = 〈φ|U†(t)|ψ〉〈ψ|U(t)|φ〉 . (5.3.14)

The probabilities (5.3.13) and (5.3.14) have been written in the Schrödinger picture;
they describe the probability of measuring an external, unchanging observable Λ in
the time-evolving state ρ(t).

But the final equality in (5.3.14) suggests a second method for describing time
evolution. The state φ can be taken to be fixed in time while the observable |ψ〉〈ψ|
evolves in time according to U†(t)|ψ〉〈ψ|U(t), yielding a second method, the
Heisenberg picture, for describing time development.
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5.3.2 Time Development in the Heisenberg
Picture—Fundamental Postulate Vb

A (conservative) physical system has a generator H of time translation that is an
hermitian element of the algebra of observables and is characteristic of the physical
system. The time development of every observable Λ(t) of the physical system is
given by

Λ(t) = U†(t) Λ U(t) , (5.3.15)

where U(t) is given by (5.3.8), and Λ denotes the observable Λ(t) at an initial time
t = 0.

The Heisenberg Picture
The state ρ is considered fixed for all time and the observable Λ(t) changes in time
according to (5.3.15). The time development of an observable Λ(t) is often written
in a second form, which is obtained by differentiating (5.3.15):

dΛ(t)

d t
= i

h̄
HeitH/h̄Λe−itH/h̄ + eitH/h̄Λ

(

− i

h̄
H

)

e−itH/h̄

= i

h̄
(H Λ(t)−Λ(t) H) = − i

h̄
[Λ(t) , H ] . (5.3.16)

The above equation, called the Heisenberg equation of motion, is solved subject to
the initial condition that when t = 0, the observable Λ(t) is given by the operator

Λ(t = 0) ≡ Λ . (5.3.17)

Then the probability for the observable Λ(t) in the state ρ is given by

P(t) = T r(Λ(t)ρ) , (5.3.18)

where the state ρ is fixed for all times t .
For the special case that the observable is the “property” Λψ ≡ |ψ〉〈ψ|, which is

the projection operator on the one-dimensional subspace spanned by the vector ψ ,
the Heisenberg differential equation of motion is

ih̄
d

dt
ψ(t) = −Hψ(t) . (5.3.19)

The equation must be solved subject to the initial condition that the observable at
t = 0 is in a state given by Λ = |ψ(t = 0〉〈ψ(t = 0)|. For this special case of
a fixed pure state φ and time-evolving observable |ψ(t)〉〈ψ(t)|, the probability of
detecting the observable |ψ(t)〉〈ψ(t)| in the state φ at time t is

P(t) = |〈ψ(t)|φ〉|2 . (5.3.20)
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5.4 Time-Dependent Hamiltonian

Up to this point the time evolution of quantum systems has been discussed only for
systems described by time-independent Hamiltonians. The Hamiltonian does not
depend explicitly on time for isolated systems that are also called “conservative”
systems. The dynamics of such systems is determined solely by the Hamiltonian,
which characterizes the system, is self-adjoint, and is an element of the algebra of
observables.

For many interesting and important quantum systems, however, external, time-
dependent forces act on the system. For example, when a rotator with a magnetic
moment μ = g

q
2m

J is placed in a time-dependent magnetic field B(t), the
Hamiltonian H(t) is

H(t) = J2

2I
− μ · B(t) = J2

2I
− g

q

2m
J · B(t) . (5.4.1)

In Sect. 5.6, a quantum system that has the above form will be discussed in
the context of magnetic resonance. For time-dependent Hamiltonians, the time
translation operators U(t) for states and U†(t) for observables are no longer the
simple exponentials.

For systems with time-dependent Hamiltonians, time evolution is described by
the Schrödinger and Heisenberg equations. In the Schrödinger picture the time
evolution of the state vector φ(t) (or the statistical operator ρ(t)) is determined
by the Schrödinger equation,

ih̄
d

dt
φ(t) = H(t) φ(t) . (5.4.2)

Completely equivalently, in the Heisenberg picture the time evolution of the
observable A(t) is determined by the Heisenberg equation of motion,

dA(t)

dt
= − i

h̄
[A(t),H(t)] + ∂A(t)

∂t
. (5.4.3)

The task is now to solve the dynamical equations (5.4.2) or (5.4.3) and then use
the solutions to calculate the Born probabilities. For the case where the Hamiltonian
is time dependent, a general solution is not known. Furthermore, the procedure for
finding the solution depends very much on the specific form of the operator function
H(t). In Sect. 5.5 a system is considered for which the Hamiltonian H depends on
an external field and is an explicit function of time.

From (5.3.3) it follows that U(t) translates the state in time from time zero to
time t , implying that U(t) is the time-translation operator. The operator −iH/h̄,
which is proportional to the energy operator H , is the generator of infinitesimal time
translations. Similarly, the operators −iPi/h̄ and −iJi/h̄, respectively, generate
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infinitesimal spatial translations and infinitesimal rotations. Since the Hamiltonian
H is hermitian,

U(t)† = (e−itH/h̄)† = eitH/h̄ = U−1(t) . (5.4.4)

A linear operator whose adjoint is its inverse is a unitary operator so U(t) is a
unitary operator. Time development in quantum mechanics is often described by a
unitary operator, and such time development has the following important property:
after transforming the state φS(0) into the state φS(t) = U(t)φS(0), it is possible
to transform back to the original state φS(0) by applying the operator U(−t) =
U†(t) = U−1(t) (the subscript S stands for Schrödinger). That is,

U(−t)φS(t) = eitH/h̄φS(t) = eitH/h̄e−itH/h̄φS(0) = φS(0) . (5.4.5)

Since it is possible to obtain the initial state at time zero from the state at time t ,
unitary time development describes processes that are reversible. Later this property
will have to be revised.

Example 5.4.1 A harmonic oscillator is in an energy eigenstate |En〉 at time zero.
What is its state at time t?

Solution Since the harmonic oscillator is in a state |En〉 at time zero, φS(0) = |En〉.
Using (5.3.3) and (5.3.8),

|En(t)〉 = U(t)φS(0) = U(t)|En〉 = e−itH/h̄|En〉 = e−itEn/h̄|En〉 .

The second formulation of time development is expressed as Heisenberg’s
equation of motion (5.4.3):

dAH(t)

dt
= − i

h̄
[AH(t),H ] + ∂AH(t)

∂t
(5.4.6)

The Heisenberg equation of motion describes how the observable AH(t) changes
in time just as the Schrödinger equation describes how the state φS(t) changes in
time. The subscript H, which stands for Heisenberg, is included to emphasize that
the observable AH(t) is time-dependent. If the physical system is isolated and does
not depend on external fields, the observable AH(t) does not depend explicitly on
time, ∂AH

∂t
= 0, and the Heisenberg equation of motion becomes

dAH(t)

dt
= − i

h̄
[AH(t),H ] , (5.4.7)

where

∂AH(t)

∂t
= ∂H

∂t
= 0 . (5.4.8)
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The time development of such a physical system, which was discussed in Sect. 3, is
determined solely by the intrinsic properties of the system and is not influenced by
external factors.

When the Hamiltonian H is not an explicit function of time, ∂H
∂t

= 0, the
Heisenberg equation of motion can be integrated. This, of course, is the same
situation for which the Schrödinger equation can be integrated.

The Schrödinger equation (5.4.2) and the Heisenberg equation of motion (5.4.3)
must lead to the same observable facts: a state developing in time according to
(5.4.2) must be equivalent to an operator (observable) developing in time according
to (5.4.3). The value associated with an experimental measurement cannot depend
on the description of time development.

The experimentally measured quantities associated with a state and an observable
are, according to Fundamental Postulate II (1.4.3) or, more specifically (1.4.6), the
expectation value of the observable A in the state φ. That is,

〈A〉 = 〈φ|A|φ〉 . (5.4.9)

These numbers will, in general, change in time 〈A〉 = 〈A〉t . One way to describe
this change in time is the following: Using the solution φS(t) to the Schrödinger
equation (5.4.2) and postulating that the observable A does not change in time,

〈A〉t = 〈φS(t)|AS|φS(t)〉 . (5.4.10)

This is called the Schrödinger picture so the operator A is denoted AS. If (5.3.3) can
be used, the above equation can be rewritten

〈A〉t = (φS(0)|U†(t)ASU(t)|φS(0)) . (5.4.11)

Another way of describing the change of the expectation value 〈A〉 in time is the
following: Using (5.4.9) and postulating that the state φ, called φH, does not change
in time, the expectation value of the observable A is

〈A〉t = 〈φH|AH(t)|φH) . (5.4.12)

This is called the Heisenberg picture. If the solution (5.3.3) can be used, the above
equation can be rewritten

〈A〉t = 〈φH|U†(t)AH(0)U(t)|φH) . (5.4.13)

Since the experimental predictions must be the same in either picture, 〈φ|A|φ〉must
be picture-independent implying (5.4.11) and (5.4.13) must be the same. Therefore,

φH = φS(0) = U†(t)φS(t) , (5.4.14)
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and

AS = AH(0) = U(t)AH(t)U†(t) . (5.4.15)

Inverting (5.4.15)

AH(t) = U†(t)ASU(t) = eitH/h̄ASe
−itH/h̄ . (5.4.16)

5.4.1 Time Development in the Heisenberg
Picture—Fundamental Postulate VIb

A (conservative) physical system has a generator H of time translation that is a
hermitian element of the algebra of observables and is characteristic of the physical
system. The time evolution of an operator of the physical system is given by (5.4.16)
where AS = A(0) is the operator at t = 0 and U(t) is given by (5.3.8).

From (5.4.14) it follows that the state φH in the Heisenberg picture equals φS(0),
the state in the Schrödinger picture at time zero. Thus in the Heisenberg picture, the
states do not change in time, and all of the time development resides in the operators
AH(t). From (5.4.15), in the Schrödinger picture the operators do not change in time,
and all of the time development is contained in the states φS(t).

Assigning all of the time-dependence to the states φS(t) or to the operators
AH(t) is simply convenient mathematically. In the Schrödinger picture the quantum
physical system is imagined to be in a different state φS(t) at different times. But
the observable, described by the operator AS, remain unchanged for all time. The
observable is defined by the apparatus which measures it and by the procedure for
the measurement. This apparatus and the procedure for measurement are imagined
not to change in time. In the Heisenberg picture, the state of the physical system
described by φH is imagined not to change in time. That is, φH describes the entire
history of the state of the physical system. The observable AH changes in time so
the procedure for measurement changes in time.

To further clarify the difference between the Schrödinger and Heisenberg
pictures, a beam pulse passing through a detector is considered. The observable
is the property that the pulse is in a particular region of the detector. From the
point of view of the Schrödinger picture, the state φS(t) changes as the beam
pulse approaches, passes through, and departs the beam detector. The observable
AS represents the detector and measurement procedure which do not change in
time. The expectation value 〈AS〉 is the probability of finding the beam pulse in
a particular region of the detector. This probability changes with time. At a time
before the beam pulse reaches the detector, the probability is essentially zero. At a
time when the “state of the beam” is inside the detector, it is close to unity. After the
beam departs the detector, the probability goes to zero again.



5.4 Time-Dependent Hamiltonian 263

How is this same experiment with the beam pulse viewed in the Heisenberg
picture? Now the state of the beam pulse remains constant in time, but the
probability that the beam is in a certain region changes as the region of detection
in the apparatus moves toward the beam pulse. As the detector moves toward the
beam pulse, the probability of detecting the beam pulse is essentially zero before
the detector reaches it. As the detector continues to move in the same direction, the
probability is close to unity when the detector has reached the “state of the beam,”
which is then inside the detector. Finally the probability drops toward zero as the
detector passes through the beam pulse.

In the discussion of the Schrödinger and Heisenberg equations, no distinction was
made between the Hamiltonian in each picture. This is because they are the same.
Letting HS = H be the Hamiltonian in the Schrödinger picture, from (5.4.16) it
follows that

HH(t) = U†(t)HSU(t) = eitH/h̄He−itH/h̄ = H . (5.4.17)

To determine when AH(t) is a solution to the Heisenberg equation of motion
(5.4.6), (5.4.16) is differentiated with respect to time,

dAH(t)

dt
=
(

i

h̄
H + it

h̄

∂H

∂t

)

eitH/h̄AH(0)e−itH/h̄

+ eitH/h̄AH(0)e−itH/h̄

(

− i

h̄
H − it

h̄

∂H

∂t

)

= − i

h̄
[AH(t),H ]+ it

h̄

[
∂H

∂t
,AH(t)

]

. (5.4.18)

Note that the derivation of the above equation is correct only if ∂H
∂t

commutes with
H . Letting AH = H in (5.4.18),

dH(t)

dt
= − i

h̄
[H,H ]+ it

h̄

[
∂H

∂t
,H

]

= it

h̄

[
∂H

∂t
,H

]

= 0 . (5.4.19)

Equations (5.4.6) and (5.4.18) are identical only if

∂AH(t)

∂t
= it

h̄

[
∂H

∂t
,AH(t)

]

, (5.4.20)

which, in general, is satisfied only when (5.4.8) is satisfied.
For nonconservative physical systems, in particular systems with time-dependent

external forces, the Heisenberg equation of motion for the observable AH(t) is given
by (5.4.6). Taking AH = H in (5.4.6),

dH

dt
= − i

h̄
[H,H ] + ∂H

∂t
= ∂H

∂t
�= 0 . (5.4.21)
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In this case, even if AH(t) itself does not depend explicitly on time ( ∂AH
∂t
= 0), the

Hamiltonian still depends explicitly on time ( ∂H
∂t
�= 0), and the Heisenberg equation

of motion cannot be integrated in the simple way described above. A general theory
for integrating (5.4.6) does not exist; however, some systems with explicit time-
dependence, such as the one discussed in Sect. 5.5, can be integrated.

One might think that eigenstates of operators in the Schrödinger and Heisenberg
pictures develop in time just as the state vectors develop in each picture: this is
incorrect. In the Schrödinger picture the eigenvector of AS, which has an eigenvalue
an at time t = 0, is denoted |an, 0〉

AS|an, 0〉 = an|an, 0〉 . (5.4.22)

Since AS does not change in time, the above relation is true for all time. Thus in the
Schrödinger picture the eigenvectors do not change in time although the states do.

In the Heisenberg picture the eigenvector of AH(t = 0) ≡ AH(0) = AS with
eigenvalue an is denoted |an, 0〉 and satisfies

AH(0)|an, 0〉 = an|an, 0〉 . (5.4.23)

The vector |an, t〉 defined by

|an, t〉 = U†(t)|an, 0〉 = eitH/h̄|an, 0〉 , (5.4.24)

is now shown to be an eigenvector of AH(t) with the same eigenvalue. Using
(5.4.16),

AH(t)|an, t〉 = eitH/h̄AH(0)e−itH/h̄eitH/h̄|an, 0〉
= eitH/h̄AH〈0)|an, 0〉 = ane

itH/h̄|an, 0〉 = an|an, t〉. (5.4.25)

In the Heisenberg picture, the states do not change in time but the eigenvectors of
observables do. Comparing (5.4.25) with (5.3.3), the eigenvectors in the Heisenberg
picture develop in “the opposite direction” as compared to the states in the
Schrödinger picture.

To further understand the time development of eigenvectors in each picture, the
expectation value of an operator A in the state φ is again examined. Writing φ

in terms of orthonormal eigenvectors |an〉 of the operator A (See, for example,
(A.4.13).),

φ =
∑

n

|an〉〈an|φ〉. (5.4.26)
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Using this result, the expectation value of A in the state φ becomes,

〈A〉 = 〈φ|A|φ〉 =
∑

m

∑

n

〈φ|am〉〈am|A|an〉〈an|φ〉 =
∑

m

∑

n

〈φ|am〉an〈am|an〉〈an|φ〉

=
∑

m

∑

n

〈φ|am〉anδm,n〈an|φ〉 =
∑

n

an〈φ|an〉〈an|φ〉 . (5.4.27)

Since the expectation value of an operator is the sum of each possible eigenvalue an

times the probability of obtaining that value,

Probability of obtaining the value an = 〈φ|an〉〈an|φ〉 = |〈an|φ〉|2. (5.4.28)

In the Schrödinger picture,

Probability of obtaining the value an at time t = |〈an, 0|φS(t)〉|2 (5.4.29)

Using (5.3.3) and (5.3.8),

Probability of obtaining the value an at time t = |〈an, 0|e−itH/h̄|φS(0))|2
(5.4.30)

But from (5.4.14), φS(0) = φH. Therefore,

Probability of obtaining the value an at time t = |〈an, 0|e−itH/h̄|φH〉|2.
(5.4.31)

In the Heisenberg picture,

Probability of obtaining the value an at time t = |〈an, t|φH〉|2. (5.4.32)

Using (5.4.24),

Probability of obtaining the value an at time t = |〈an, 0|e−itH/h̄φH〉|2.
(5.4.33)

The result (5.4.30) from the Schrödinger picture agrees with the result (5.4.33) from
the Heisenberg picture as it must.

Two physically equivalent pictures that describe time development have been
discussed: the Schrödinger picture and the Heisenberg picture. Depending on
the specific problem, one picture may be more convenient than the other for
calculations, but the predictions of each are identical. In addition to the two
extreme pictures discussed, which place all the time dependence either in the
states (Schrödinger picture) or in the operators (Heisenberg picture), there are other
possible pictures. In fact, any two pictures related by a unitary transformation are
equivalent physically.
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Example 5.4.2 Let the states and operators in pictures 1 and 2 be denoted,
respectively, by φ1, A1 and φ2, A2. If

φ2 = U†φ1 , (5.4.34a)

A2 = U†A1U , (5.4.34b)

where U is a unitary operator, show that the expectation value of the operator A is
the same in either picture.

Solution The expectation value of A in picture 2, denoted 〈A〉2, is given by

〈A〉2 = 〈φ2|A2|φ2〉 .

Using (5.4.34a),

〈A〉2 = 〈φ1|UA2U
†|φ1〉 .

Using (5.4.34b),

〈A〉2 = 〈φ1|A1|φ1〉 = 〈A〉1 .

The transformations relating the Heisenberg picture and the Schrödinger picture are
of the form (5.4.34), where U = e−itH/h̄.

Although it will not discussed in detail here, a third picture, usually called the
interaction picture, is of great importance. In this picture the Hamiltonian H is split
into two parts, H = H(0) + H ′ where the “free” Hamiltonian is H(0) and the
“interaction” Hamiltonian is H ′. Denoting the states and operators in the interaction
picture, respectively, by φip and Aip, the interaction picture and the Schrödinger
picture are related by the unitary transformations

φip(t) = U(0)†(t)φS(t) , (5.4.35a)

Aip(t) = U(0)†(t)ASU(0)(t) , (5.4.35b)

where U(0)(t) = e−itH
(0)
S /h̄. The interaction picture is especially useful because the

time development of the operators in the interaction picture is determined by the
“free” Hamiltonian in the interaction picture. (See Problem 5.8.)

When the Hamiltonian is not an explicit function of time, the relationships among
the Schrödinger, Heisenberg, and interaction pictures are summarized in Table 5.2
on the next page.
From Table 5.2 on the facing page note that in the interaction picture the time
development of the state is determined by the interaction Hamiltonian in the
interaction picture, H ′

ip = U(0)†
(t)H ′

SU(0)(t). (See Problem 5.9.) Since U(0)(t) =
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Table 5.2 Relationships among the Schrödinger, Heisenberg and interaction pictures

Picture State Operator

Schrödinger φS(t) = U(t)φS(0) AS

Heisenberg φH = φS(0) AH(t) = U†(t)ASU(t)

Interaction φip(t) = U(0)†(t)φS(t) Aip(t) = U(0)†(t)ASU(0)(t)

Picture Equation of motion for states

Schrödinger ih̄
dφS(t)

dt
= HφS(t)

Heisenberg φH = φS(0) =constant

Interaction ih̄
dφip(t)

dt
= H ′

ipφip(t)

Picture Equation of motion for operators

Schrödinger dAS
dt
= ∂AS

∂t

Heisenberg dAH(t)
dt

= − i
h̄

[AH(t),H ]+ ∂AH(t)
∂t

Interaction
dAip(t)

dt
= − i

h̄

[

Aip(t),H
(0)
ip

]

+ ∂Aip(t)

∂t

e−itH
(0)
S /h̄ does not in general commute with H ′

S, it follows that in general H ′
ip �= H ′

S.

Because [H(0)
S , U(0)(t)] = 0,

H
(0)
ip = U(0)†(t)H

(0)
S U(0)(t) = U(0)†(t)U(0)(t)H

(0)
S = H

(0)
S , (5.4.36)

so the “free” Hamiltonian in the interaction picture is the same as the free
Hamiltonian in the Schrödinger picture.

5.5 Precession of a Spinning Particle in a Magnetic Field:
The Interpretation of the Schrödinger and Heisenberg
Pictures

This section provides a specific example illustrating the relationship between the
Schrödinger and Heisenberg pictures for time evolution of a quantum system.
Additionally, it also serves as an introduction to magnetic resonance that is discussed
in the next section.

As an example of time development, the motion of a rotator, a quantum
mechanical system with rotational but no translational degrees of freedom, is
described in a uniform, external magnetic field. The Hamiltonian of this system
is given by

H = 1

2I
J2 − μ · B(t) , (5.5.1)
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where I is the moment of inertia, J is the angular momentum, and μ is the magnetic
dipole moment of the rotator in a uniform magnetic field B. Although the magnetic
field may depend on time t , in this section it is chosen to be time-independent. The
problem is first solved in the Schrödinger picture and then in the Heisenberg picture
to further clarify the differences and similarities of the two pictures. While the
primary purpose is to illustrate the relationship between the two pictures, the motion
of spin in a magnetic field is of considerable practical interest in connection with
magnetic resonance experiments. Such experiments, which involve time-dependent
magnetic fields, will be discussed in the next section.

5.5.1 Precession of a Classical Spinning Particle in a Magnetic
Field

Before considering the precession of a spinning quantum system using the Schrö-
dinger and Heisenberg pictures, the corresponding classical system, consisting of
a charged mass-point with orbital angular momentum l in a uniform, constant
magnetic field, is solved. Classically, the torque τ equals the time rate of change
of the angular momentum l,

τ = d l
d t

. (5.5.2)

When the charged mass-point rotates in the magnetic field, a uniform field does not
exert a net magnetic force; however, it does exert a net torque τ ,

τ = μ× B, (5.5.3)

on the magnetic dipole moment μ. The magnetic moment μ of a point-charge q

rotating with angular momentum l is given by

μ = q

2m
l. (5.5.4)

The expression for the magnetic dipole moment μ of the object was discussed in
Chap. 4, Sect. 4.1 (See (4.1.3).). In general, a particle with spin l has a magnetic
dipole moment

μ = g
e

2m
l , (5.5.5)

where g is the Landé factor for the particle. Combining (5.5.2)–(5.5.5), the
following differential equation for orbital angular momentum is obtained:

dl
dt
= τ = μ× B = g

e

2m
l× B (5.5.6a)
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In component form the above equation becomes

dli

dt
= g

e

2m
εijkljBk . (5.5.6b)

Equation (5.5.6) implies that the change in orbital angular momentum is perpendic-
ular both to the magnetic field and to the orbital angular momentum itself.

For convenience the z axis is chosen to point in the direction of B. Then the three
components of the vector equation (5.5.6) are as follows:

d lx

dt
= geB

2m
ly (5.5.7a)

d ly

dt
= −geB

2m
lx (5.5.7b)

d lz

dt
= 0 (5.5.7c)

The solution to (5.5.7c) is immediate: the z-component of orbital angular momen-
tum remains constant in time,

lz(t) = lz(0) . (5.5.8)

In particular, if the initial condition

lz(0) = 0 , (5.5.9a)

is chosen, then

lz(t) = 0 , (5.5.9b)

for all t .
To solve (5.5.7a) and (5.5.7b), a trial solution is used that has the form

lx = c1 cos ωt + c2 sin ωt , (5.5.10a)

ly = c3 sin ωt + c4 cos ωt , (5.5.10b)

Substituting (5.5.10) into (5.5.7a) and (5.5.7b), (5.5.10) is a solution provided

c3 = −c1, c2 = c4, (5.5.11)

and

ω = ωL , where ωL = geB

2m
, (5.5.12)
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is the Larmor frequency of the spinning particle with the Landé factor g. (The
frequency ωL = qB/2m is called the classical Larmor frequency.)

Initial conditions determine the values of the constants c1 and c4. Specifically,
from (5.5.10) when t = 0, lx = c1 and ly = c4 or

c1 = lx(0), c4 = ly(0). (5.5.13)

Using (5.5.10)–(5.5.13), the solution to (5.5.7) is

lx(t) = lx(0) cos ωLt + ly(0) sin ωLt, (5.5.14a)

ly(t) = −lx(0) sin ωLt + ly(0) cos ωLt, (5.5.14b)

lz(t) = lz(0). (5.5.14c)

From (5.5.14) it follows that

l2(t) = l2
x(t)+ l2

y(t)+ l2
z (t) = l2

x(0)+ l2
y(0)+ l2

z (0) = l2(0). (5.5.15)

Thus the length of the orbital angular momentum vector remains constant as it
moves in the magnetic field. Furthermore, denoting the angle between the magnetic
field B and the angular momentum l(t) by α,

cos α = B · l(t)
|B| · |l(t)| =

Bzlz(t)

Bz|l(t)| =
lz(0)

√

l2
x(0)+ l2

y(0)+ l2
z (0)

, (5.5.16)

implying that the angle α between B and l(t) remains constant. Note that when
lz(0) = 0, cos α = 0 or α = π/2, implying that the angular momentum l is always
perpendicular to the z axis and, therefore, rotates in the x − y plane.

To obtain a clear geometrical understanding of the motion of l(t) in the presence
of a constant external magnetic field B, the time t = 0 is chosen when ly = 0. At
this instant

lx(t = 0) = lx(0), ly(t = 0) = 0, lz(t = 0) = lz(0), (5.5.17)

and (5.5.14) becomes

lx(t) = lx(0) cos ωLt, (5.5.18a)

ly(t) = −lx(0) sin ωLt, (5.5.18b)

lz(t) = lz(0). (5.5.18c)

The situation at t = 0 is depicted in Fig. 5.1a on the next page. From (5.5.18),
a quarter of a period T later, ωLT/4 = π/2, implying that cos(ωLT

4 ) = 0 and

sin(ωLT
4 ) = 1. Thus lx(t = T

4 ) = 0, ly(t = T
4 )) = −lx(0) and lz(t = T

4 )) = lz(0).
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Fig. 5.1 Motion of the angular momentum l of a charged mass-point in a constant, uniform
magnetic field B

This situation is depicted in Fig. 5.1b. From Fig. 5.1 it follows that the tip of the
angular momentum vector is rotating in a circle of radius lx(0) about the z axis.
When viewed from above, the direction of rotation is clockwise. Classically, the
orbital angular momentum vector precesses about the z axis.

5.5.2 Mathematical Preliminaries: Rotation of Operators
and States

In quantum mechanics it is possible to view the time development in different ways.
If the Schrödinger picture is used, the state φ(t) precesses about the z axis and the
angular momentum operators are constant in time. If the Heisenberg picture is used,
the observables evolve in time with the result that the angular momentum operators
Ji = Ji(t) precess about the z axis while the state does not change. Because the
quantum solutions involve either rotating vectors or rotating operators, before the
solutions can be obtained, it is necessary to further discuss such rotations.

The unit vector e3, which points in the z direction, has been distinguished
physically by placing it in the direction of the magnetic field, B = B e3, so rotations
about the 3 axis are of particular interest. As shown in Fig. 5.2 on the following
page, when the unit vector e1 is rotated by an angle θ about the 3 axis, it becomes
the new vector n where

e1 → n = e1 cos θ + e2 sin θ. (5.5.19)
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Fig. 5.2 Rotation of the unit
vector e1 about the z axis by
an angle θ

e2

e1 cosѲ +e2 sinѲ

Y
e1

| j , j1 )
X

Z

-iѲJ3/ h
e | j , j1 )

Ѳ

For every rotation in three-dimensional space, there is a corresponding operator
in the space H of quantum mechanical states and observables such that the
transformation (5.5.19) is represented by a transformation in H . When e1 is
transformed into n, the component of J along e1, namely J1 = J · e1, is transformed
into the component of J in the direction of n, which is J · n,

J1 → J · n = J · (e1 cos θ + e2 sin θ) = J1 cos θ + J2 sin θ . (5.5.20)

The eigenvectors |j, j1〉 that satisfy

J 2|j, j1〉 = h̄2j (j + 1)|j, j1〉,
J1|j, j1〉 = h̄j1|j, j1〉, (5.5.21)

also are rotated. (Usually an eigenvector of J2 and Jz ≡ J3 is chosen, but this new
basis system, which will be employed later, is an eigenvector of J1 instead of J3.)

As will be shown, the unitary operator Uθ = e−iθJi/h̄ rotates an eigenvector by
an angle θ about the i axis, the direction being determined by the right-hand rule.
Thus under the rotation (5.5.19), the eigenvector |j, j1〉 becomes

|j, j1〉 → e−iθJ3/h̄|j, j1〉. (5.5.22)

Since e−iθJ3/h̄|j, j1〉 is the eigenvector obtained by rotating |j, j1〉 by an angle
θ about the z axis, the vector e−iθJ3/h̄|j, j1〉 must be an eigenstate of the angular
momentum operator in the direction n, which is J · n, with eigenvalue h̄j1. That is,
as a result of the rotation, J1 → J · n where

J · ne−iθJ3/h̄|j, j1〉 = h̄j1e
−iθJ3/h̄|j, j1〉 . (5.5.23)
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Using (5.5.20),

(J1 cos θ + J2 sin θ)e−iθJ3/h̄|j, j1〉 = h̄j1e
−iθJ3/h̄|j, j1〉. (5.5.24)

Since

(e−iθJ3/h̄J1e
iθJ3/h̄)e−iθJ3/h̄|j, j1〉 = e−iθJ3/h̄J1|j, j1〉,

= h̄j1e
−iθJ3/h̄|j, j1〉 , (5.5.25)

the operator obtained by rotating J1 by an angle θ about the 3 axis according to
the right-hand rule is e−iθJ3/h̄J1e

iθJ3/h̄. Comparing (5.5.24) and (5.5.25), under the
rotation (5.5.19),

J1 → e−iθJ3/h̄J1e
iθJ3/h̄ = J1 cos θ + J2 sin θ = J · n. (5.5.26)

The above equation can be proved directly by using the mathematical identity

eiBAe−iB = A+ i[B,A] + (i)2

2! [B, [B,A]] + (i)3

3! [B, [B, [B,A]]] + · · · .
(5.5.27)

(The proof of the above identity is sketched in Problem 5.6.) Taking A = J1 and
B = −θ J3/h̄, (5.5.27) becomes

ei(−θJ3/h̄)J1e
−i(−θJ3/h̄) = J1 + i

[

− θ

h̄
J3, J1

]

+ (i)2

2!
[

− θ

h̄
J3,

[

− θ

h̄
J3, J1

]]

+ (i)3

3!
[

− θ

h̄
J3,

[

− θ

h̄
J3,

[

− θ

h̄
J3, J1

]]]

+ · · · (5.5.28)

With the help of the commutation relations

[J3, J1] = ih̄J2, [J3, J2] = −ih̄J1,

(5.5.28) becomes

e−iθJ3/h̄J1e
iθJ3/h̄ = J1 + θJ2 − θ2

2! J1 − θ3

3! J2 + · · ·

= J1

(

1− θ2

2! +
θ4

4! + · · ·
)

+ J2

(

θ − θ3

3! +
θ5

5! + · · ·
)

= J1 cos θ + J2 sin θ. (5.5.29)
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To obtain the last line of the above expression, the Taylor series expansions of cos θ

and sin θ have been used. Equation (5.5.29) proves that the operator obtained from
J1 by rotating by an angle θ about the 3 axis is given by (5.5.26). Similarly, rotating
J2 by an angle θ about the 3 axis yields (See Problem 5.16.)

J2 → e−iθJ3/h̄J2e
iθJ3/h̄ = −J1 sin θ + J2 cos θ . (5.5.30)

Example 5.5.1 The angular momentum operator J1 is rotated 90◦ about the 3 axis
in a counterclockwise direction when viewed from above.

(a) Using Fig. 5.2 on page 272 express the rotated operator in terms of J1, J2
and J3.

(b) Establish the result in (a) mathematically.

Solution

(a) From Fig. 5.2 when the operator J1 is rotated 90◦ it becomes the operator
J2.

(b) This result is established mathematically by using the specific value θ =
π/2 in (5.5.29):

J1 → e−i(π/2)J3/h̄J1e
i(π/2)J3/h̄ = J1 cos (π/2)+ J2 sin (π/2) = J2 .

The value of an observable in the three-dimensional space in which an experi-
ment takes place is determined by the experimental apparatus. In the mathematical
space H , the observables are represented by operators Ji or |j, ji〉〈j, ji |, where
i = 1, 2, 3. The expectation value of the observable |j, j1〉〈j, j1|, for example, is
the probability that the value of the angular momentum operator J1 is j1:

Probability of the value j1 in the state φ(t) = 〈φ(t)|j, j1〉〈j, j1|φ(t)〉
= |〈φ(t)|j, j1〉|2 . (5.5.31)

5.5.3 Precession of a Spinning Particle in a Magnetic Field:
The Schrödinger Picture

Having completed the mathematical preliminaries, a quantum mechanical descrip-
tion of the precession of angular momentum in a constant, uniform external
magnetic field B = B e3 will be given in terms of probabilities and expectation
values, first using the Schrödinger picture and then using the Heisenberg picture.
The Hamiltonian is given by

H = J2

2I
− μ · B , (5.5.32)
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where B is the constant, uniform external magnetic field and the magnetic dipole
operator μ is

μ = g
e

2m
J . (5.5.33)

In the above equation g is the Landé factor, e is the charge of the rotator, and m is
its mass.

The energy levels of the Hamiltonian (5.5.32) were determined in Chap. 4,
Sect. 4.1. By choosing the z-direction as the direction of B, the z-component of
angular momentum J3 commutes with the Hamiltonian H . Then it is possible to
choose as a basis system |j, j3〉, which are simultaneous eigenstates of H and J3.
The energy eigenvalues are immediately found to be

H |j, j3〉 =
(

J2

2I
− g

e

2m
J3B

)

|j, j3〉 =
(

h̄2j (j + 1)

2I
− g

eh̄

2m
j3 B

)

|j, j3〉 .
(5.5.34)

In the Schrödinger picture the state changes according to

φ(t) = e−iH t/h̄ φ(t = 0) , (5.5.35)

and the angular momenta observables Ji and the observables5 |j, ji〉〈j, ji| remain
constant in time.

In the classical calculation earlier in this section, at the particular time t = 0 the
angular momentum was assumed to point along the x axis, implying that lx(0) = lx ,
ly(0) = 0, and lz(0) = 0. In an analogous manner for the quantum calculation, at
t = 0 the state of the system is assumed to be an eigenstate of J1 with eigenvalue
h̄ j1. Thus the state vector at t = 0 is assumed to be

φ(t = 0) = |j, j1〉. (5.5.36)

After choosing the 3 axis to point in the direction of B, it is possible to calculate
φ(t) using (5.5.35), (5.5.36) and the explicit expression for H given in (5.5.32),

φ(t) = e−iH t/h̄ φ(t = 0) = (e−i[h̄j (j+1)/2I ]teig(e/2m)B t J3/h̄)|j, j1〉
= e−i[h̄j (j+1)/2I ]teiωL tJ3/h̄|j, j1〉 . (5.5.37)

5The operators |j, ji 〉〈j, ji | represent the observables that measure the probability for the angular
momentum values j, ji . That is, |〈φ(t)|j, ji 〉|2 is the probability for the values j, ji in the state
φ(t).
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The frequency ωL is the Larmor frequency (5.5.12).6

The first exponential term on the right-hand side of (5.5.37) is a phase factor
that depends on time. Recalling that e−iθJ3/h̄ rotates a state about the 3 axis by
an angle θ according to the right-hand rule (counterclockwise as viewed from the
positive 3 axis), the second exponential factor eiωL tJ3/h̄ rotates the state by an angle
ωLt in a clockwise direction as viewed from the positive 3 axis.

The expectation values of the three components of angular momentum are now
calculated in the state φ(t). According to (5.5.36), initially the (pure) state φ(0) is
such that the magnetic moment (of all rotators in the ensemble) has a component in
the positive 1-direction equal to g(e/2m) j1. The expectation value of the operator
J1 at time t = 0 is

〈φ(t = 0)|J1|φ(t = 0)〉 = 〈j, j1|J1|j, j1〉 = h̄j1. (5.5.38)

Using (5.5.37) and then (5.5.29), the expectation value of J1 at time t is

〈φ(t)|J1|φ(t)〉 = 〈e−iH t/h̄φ(0)|J1|e−iH t/h̄φ(0)〉 = 〈j, j1|e−iωLtJ3/h̄J1e
iωLtJ3/h̄|j, j1〉

= 〈j, j1|J1 cos ωLt + J2 sin ωLt |j, j1〉 = h̄j1 cos ωLt . (5.5.39)

The final line of the above equation was obtained using

〈j, j1|J1|j, j1〉 = h̄j1, 〈j, j1|J2|j, j1〉 = 0 . (5.5.40)

(See Problem 5.13.) Using (5.5.30), a similar calculation yields

〈φ(t)|J2|φ(t)〉 = −h̄j1 sin ωLt. (5.5.41)

The relation

〈φ(t)|J3|φ(t)〉 = 0 (5.5.42)

follows immediately from the formula [J3 , eiωLtJ3/h̄] = 0, the initial condition
φ(0) = |j, j1〉, and

〈j, j1|J3|j, j1〉 = 0, (5.5.43)

(See Problem 5.13.)
In the classical model the components of orbital angular momentum were deter-

mined as a function of time in (5.5.18). Statements about observables in classical
mechanics are replaced by statements about expectation values of observables in

6The Larmor frequency ωL for a proton (g = 2.79, e = 1.60× 10−19 C, m = 1.67× 10−27 kg) in
a typical magnetic field B = 1.0 T is ωL = 1.34 × 108 Hz, which is in the radio frequency range.
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quantum mechanics. The quantum equations (5.5.39), (5.5.41), and (5.5.42), which
specify the expectation values of angular momentum operator as a function of time,
are identical in form to the classical equations (5.5.18) that give the classical orbital
angular momentum as a function of time.

Because the operators Ji are time-independent in the Schrödinger picture, the
eigenvectors of Ji are also constant in time. From (5.5.31), the probability of
measuring the value h̄j ′1 for the observable J1 at time t is equal to the expectation
value of the projection operator |j, j ′1〉〈j, j ′1| in the state φ(t). That is,

Pφ(t)(|j, j ′1〉〈j, j ′1|) = 〈φ(t)|j, j ′1)〈j, j ′1|φ(t)〉
= 〈j, j1|e−iωLtJ3/h̄|j, j ′1)〈j, j ′1|eiωLtJ3/h̄|j, j1〉 . (5.5.44)

5.5.4 Precession of a Spinning Particle in a Magnetic Field:
The Heisenberg Picture

To describe the same system in the Heisenberg picture, the time development of the
angular momentum operators must be determined, which necessitates solving the
Heisenberg equations of motion (5.4.3),

dJi

dt
= − i

h̄
[Ji,H ] . (5.5.45)

Taking the 3 axis to be in the direction of the magnetic field and using (5.5.32) and
(5.5.33), the above equation becomes

dJi

dt
= − i

h̄

[

Ji,
J2

2I
− g

e

2m
BJ3

]

= i
geB

2mh̄
[Ji, J3] . (5.5.46)

The second equality above follows because [Ji, J2] = 0. Using the commutation
relations (2.3.1) for angular momentum, the equations (5.5.46) for J1, J2 and J3
become, respectively,

dJ1

dt
= geB

2m
J2 , (5.5.47a)

dJ2

dt
= −geB

2m
J1 , (5.5.47b)

dJ3

dt
= 0. (5.5.47c)
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The Heisenberg equations (5.5.47) have the same form as the classical equations
(5.5.7) and can be solved similarly with the result

J1(t) = J1(0) cos ωLt + J2(0) sin ωLt = eiHtJ1(0)e−iH t , (5.5.48a)

J2(t) = −J1(0) sin ωLt + J2(0) cos ωLt = eiHtJ2(0)e−iH t , (5.5.48b)

J3(t) = J3(0) = eiHtJ3(0)e−iH t . (5.5.48c)

In the above equation the Larmor frequency ωL = geB/2m, and the final equalities
in (5.5.48a) and (5.5.48b) follow, respectively, from (5.5.29) and (5.5.30).

In the Heisenberg picture, the state does not change in time. Here, just as in the
Schrödinger picture, the state φ is assumed to be such that at t = 0 the probability
of obtaining the value h̄j1 is unity in a measurement of J1(0). That is,

Pφ(t=0)(|j, j1〉〈j, j1|) = 〈φ(t = 0)|j, j1〉〈j, j1|φ(t = 0)〉 = 1. (5.5.49)

Since the system is being described in the Heisenberg picture where the states
are time-independent, the above equation is equivalent to saying that, except for
a possible phase factor, the state φ = φ(0) for all times is given by

φ = |j, j1〉 . (5.5.50)

The expectation values for the components Ji(0) in this state are

〈φ|J1(0)|φ〉 = 〈j, j1|J1(0)|j, j1〉 = h̄j1 , (5.5.51a)

〈φ|J2(0)|φ〉 = 〈j, j1|J2(0)|j, j1〉 = 0 , (5.5.51b)

〈φ|J3(0)|φ〉 = 〈j, j1|J3(0)|j, j1〉 = 0 . (5.5.51c)

Equations (5.5.51) are identical to (5.5.40) and (5.5.43). (The derivation is sketched
in Problem 5.13.) Using (5.5.48) and (5.5.51), the expectation value of the compo-
nents of angular momentum at time t are found to be

〈φ|J1(t)|φ〉 = 〈j, j1|J1(0) cos ωLt + J2(0) sin ωLt|j, j1〉 = h̄j1 cos ωLt ,

(5.5.52a)

〈φ|J2(t)|φ〉 = 〈j, j1| − J1(0) sin ωLt + J2(0) cos ωLt|j, j1〉 = −h̄j1 sin ωLt ,

(5.5.52b)

〈φ|J3(t)|φ〉 = 〈j, j1|J3(0)|j, j1〉 = 0. (5.5.52c)

The expectation values for angular momentum calculated above in the Heisenberg
picture agree with the expectation values (5.5.39), (5.5.41), and (5.5.42) calculated
in the Schrödinger picture.
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In the Heisenberg picture observables are functions of time, implying that
the angular momentum operators Ji(t) = eiHt/h̄Ji(0)e−iH t/h̄ depend on time.
Also, from (5.4.24), for systems described by time-independent Hamiltonians, the
observable eigenvector |j, j1〉 at time t is, except for a possible phase factor, given
by

|j, j1, t〉 = eitH/h̄|j, j1〉 . (5.5.53)

For the specific Hamiltonian (5.5.32)

|j, j1, t〉 = ei[h̄j (j+1)/2I ]te−ig[eB/2m]tJ3/h̄|j, j1〉
= ei[h̄j (j+1)/2I ]te−iωLtJ3/h̄|j, j1〉. (5.5.54)

For the observable J1, the probability of detecting the value h̄j ′1 is the expectation
value of the projection operator |j, j ′1, t〉〈j, j ′1, t| in the state φ and is given by

Pφ(|j, j ′1, t〉〈j, j ′1, t|) = 〈φ|j, j ′1, t〉〈j, j ′1, t|φ〉 . (5.5.55)

Using the fact that φ = |j, j1〉 has been chosen to be an eigenstate of J1 with and
eigenvalue j1, from (5.5.54) it follows that

Pφ(|j, j ′1, t〉〈j, j ′1, t|) = 〈j, j1|e−iωLtJ3/h̄|j, j ′1〉〈j, j ′1|eiωLtJ3/h̄|j, j1〉 .
(5.5.56)

The probability calculated above in the Heisenberg picture agrees with the result
(5.5.44) in the Schrödinger picture as it must.

From the preceding discussion it follows that predictions for probabilities are
the same in either the Schrödinger or the Heisenberg picture. (The predictions are
probabilities that are measured as detector counts in the observation apparatus that is
placed relative to the state, which is the preparation apparatus.) The only difference
in the two pictures is the way in which the experiment is visualized.

To further clarify the difference between the Schrödinger and Heisenberg
pictures, let φ represent the state with all magnetic moments aligned along the e1-
direction with j1 = j . This situation is shown schematically in Fig. 5.3a on the
following page by the arrow pointing along e1. The observable is described by
the detector. When the detector is placed along the e1 axis, it registers magnetic
moments pointing in the e1-direction. The observable is the probability of detecting
a magnetic moment directed along the e1 axis. Mathematically the observable is
described by |j, j1 = j 〉〈j, j1 = j |. Figure 5.3a shows the experimental situation at
time t = 0.

In the Schrödinger picture the state φ(0) = |j, j1〉 “rotates” according to
(5.5.37). After a time t the direction of the magnetic moments of the state have
rotated about the 3 axis by an angle −ωLt . Since the observable (operator)
|j, j1 = j 〉〈j, j1 = j | does not change in time, the situation is as shown in Fig. 5.3b
for ωLt = π/2.
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Fig. 5.3 The precession of the angular momentum from the point of view of the Schrödinger
picture. During one quarter of a period, the state is rotated π/2 in a clockwise direction
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Fig. 5.4 The precession of the angular momentum from the point of view of the Heisenberg
picture. During one quarter of a period, the detector is rotated π/2 in a counterclockwise direction

In the Heisenberg picture the observable (operator) |j, j1 = j, t〉〈j, j1 = j, t|
changes in time according to (5.5.54). Figure 5.4a on the current page again shows
the situation at time t = 0. After a time t , the detector has rotated about the 3 axis
by an angle +ωLt . Because the state φ does not change in time, the situation is that
shown in Fig. 5.4b for ωLt = π/2.

In comparing Figs. 5.3b and 5.4b, the observed probabilities (detector counts) are
the same because space is homogeneous for rotations, The result of the calculations
(5.5.44) and (5.5.55) confirms that they are indeed identical.
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The difference between Figs. 5.3b and 5.4b is strictly in the mind. In the
Schrödinger picture (Fig. 5.3b), the experiment is viewed from the perspective of
the detector and the preparation apparatus is seen to rotate clockwise when viewed
from the positive 3 axis. In the Heisenberg picture (Fig. 5.4b), the experiment is
viewed from the perspective of the preparation apparatus and the detector is seen to
rotate in a counterclockwise direction when viewed from the positive 3 axis.

Matrix elements of the type that appear in (5.5.49) are especially easy to calculate
when the spin j = 1/2.

Example 5.5.2 Verify that if, in addition to the usual angular momentum commuta-
tion relations (2.3.1), the angular momentum operators also satisfy

(JiJj + JjJi) ≡ {Ji, Jj } = h̄2

2
Iδij ; i, j = 1, 2, 3 = x, y, z, (5.5.57)

then the only allowed value of total angular momentum is j = 1/2. (The symbol
{A,B} is called an anticommutator.)

Solution From (5.5.57) it follows that

J 2
1 = J 2

2 = J 2
3 =

h̄2

4
I. (5.5.58)

With this result,

h̄2j (j + 1)|j, j3〉 = J2|j, j3〉 = (J 2
1 + J 2

2 + J 2
3 )|j, j3〉 = h̄2 3

4
|j, j3〉 .

Comparing the first and last expressions in the above equation, the only allowed
value of total angular momentum is j = 1/2.

Example 5.5.3 Show that when spin j = 1/2, operators of the form e−iθJ3/h̄ that
appear in (5.5.56) can be written in the form

e−iθJ3/h̄ = I cos
θ

2
− 2i

J3

h̄
sin

θ

2
, j = 1/2 only. (5.5.59)

Solution Expanding e−iθJ3/h̄ in a Taylor series,

e−iθJ3/h̄ = 1− i
θ

h̄
J3 + 1

2!
(

−i
θ

h̄
J3

)2

+ 1

3!
(

−i
θ

h̄
J3

)3

+ 1

4!
(

−i
θ

h̄
J3

)4

+ 1

5!
(

−i
θ

h̄
J3

)5

+ · · · = I

[

1− 1

2!
(

θ

2

)2

+ 1

4!
(

θ

2

)4

− · · ·
]

− 2i
J3

h̄

[

θ

2
− 1

3!
(

θ

2

)3

+ 1

5!
(

θ

2

)5

− · · ·
]

,
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where the property (5.5.58) has been used. The sum of the terms in the first and
second square brackets are, respectively, the Taylor series expansions for cos(θ/2)

and sin(θ/2), yielding the desired result.

Example 5.5.4 Calculate e−i(θ1J1+θ2J2+θ3J3)/h̄ when j = 1/2.

Solution Rather than directly expanding the exponent in a Taylor series, the
exponent is first rewritten in a more compact form. Defining the unit vector

n = 1

θ
(θ1e1 + θ2e2 + θ3e3) where θ =

√

θ1
2 + θ2

2 + θ3
2 ,

and

J̃3 = n · J = 1

θ
(θ1J1 + θ2J2 + θ3J3) ,

it follows that

e−i(θ1J1+θ2J2+θ3J3)/h̄ = e−iθ J̃3/h̄ .

Using (5.5.59),

e−i(θ1J1+θ2J2+θ3J3)/h̄ = I cos

(
θ

2

)

− 2i
J̃3

h̄
sin

(
θ

2

)

= I cos

(
θ

2

)

− 2i
n · J
h̄

sin

(
θ

2

)

, j = 1/2 only. (5.5.60)

Restricting to the case where the spin j = 1/2, the probability (5.5.44) or,
equivalently, (5.5.56) is evaluated using (5.5.60). Specifically, here the probability
Pφ(|1/2, j ′1 = −1/2〈〉1/2, j ′1 = −1/2|) ≡ Pj ′1=−1/2 is calculated, which is the
probability for measuring the value j ′1 = −1/2 if the value of J1(0) at time t = 0
is, with certainty, j1 = 1/2:

Pj ′1=−1/2 = |〈1/2, j ′1 = −1/2|eiωLtJ3/h̄|1/2, j1 = 1/2〉|2 . (5.5.61)

Using (5.5.59),

Pj ′1=−1/2 = |〈1/2, j ′1 = −1/2|I cos
ωLt

2
+ 2i

J3

h̄
sin

ωLt

2
|1/2, j1 = 1/2〉|2 .

(5.5.62)
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Now,

〈j = 1/2, j ′1 = −1/2|j = 1/2, j1 = 1/2〉 = 0,

〈j = 1/2, j ′1 = −1/2|J3|j = 1/2, j1 = 1/2〉 = ih̄

2
,

as calculated in Problem 5.14. Thus

Pj ′1=−1/2 = sin2 ωLt

2
. (5.5.63)

Similarly, the probability of measuring a value 〈J1〉 = 1/2 is

Pj ′1=1/2 = cos2 ωLt

2
. (5.5.64)

The sum of the probabilities for measuring 〈J1〉 = −1/2 and 〈J1〉 = 1/2 is unity as
it must be. Since the expectation value of an operator is the sum of each eigenvalue
times its respective probability,

〈J1〉 = − h̄

2
Pj ′1=−1/2 +

h̄

2
Pj ′1=1/2 =

h̄

2

(

− sin2 ωLt

2
+ cos2 ωLt

2

)

= h̄

2
cos ωLt,

(5.5.65)

which agrees with (5.5.52a) if j1 is taken to be 1/2 in that equation.

5.6 Magnetic Resonance

Magnetic resonance is an important phenomenon described by a Hamiltonian that is
an explicit function of time. While the magnetic resonance experiment discussed in
this section can be used to determine the Landé g-factor, there are also many other
important applications of the magnetic resonance phenomenon. Magnetic resonance
imaging is now used extensively in medicine to examine soft tissue much the way
that x-rays have been used to view bones. Also, functional magnetic resonance
imaging is used, for example, in scientific research to determine which parts of the
brain are active when specific tasks are performed.

From the previous section, the Hamiltonian of a rotator with magnetic moment
μ = g(e/2m)J in the presence of an external magnetic field B is

H0 = J2

2I
− μ · B = J2

2I
− g(e/2m)J · B ≡ H 0 − g(e/2m)J · B . (5.6.1)
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Fig. 5.5 Energy levels of a
spin-1/2 rotator in a constant,
uniform magnetic field. The
Landé g-factor is assumed to
be positive
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If the direction of the 3 axis is chosen in the direction of B, the energy levels are

Ej,j3 =
h̄2j (j + 1)

2I
− geBh̄

2m
j3 . (5.6.2)

It is not crucial or even important that the quantum system placed in the magnetic
field is a rotator. The Hamiltonian H 0 could just as well describe atoms, molecules
or some other system provided that it satisfies two conditions: (1) The Hamiltonian
H 0 must be rotationally invariant, implying that it commutes with Ji , [H 0, Ji ] = 0.
The first term in (5.6.2) would then be E0

n,j instead of h̄2j (j + 1)/2I , where n

represents some additional quantum numbers. (2) The magnetic field B must be
chosen so that the change in energy as a result of a spin flip is much smaller than
E0

n,j , implying that E0
n,j does not change during the experiment.

The energy levels for the spin j = 1/2 doublet are shown in Fig. 5.5. Before
the magnetic field B is turned on, the energy E0

n,j = h̄2j (j + 1)/2I is degenerate
in j3. But, as a result of the interaction with the magnetic field, the degeneracy
is removed because the energy depends on j3. Since the value of j remains fixed
(usually j = 1/2), if g is positive, energy levels with negative values of j3 are
shifted upward, and those with positive values are shifted downward.

If the mass m is known, g can be determined from the splitting of the energy
levels. For example, taking j = 1/2 in (5.6.2),

g = 2m

eBh̄
(Ej=1/2, j3=−1/2 − Ej=1/2 ,j3=1/2) = 2m

eBh̄
ΔE . (5.6.3)

The requirement that the energy gaps between the eigenvalues E0
n,j of the Hamilto-

nian H 0 be large in comparison with the energy splitting g(eh̄/2m)Bj3 is

|E0
n,j − E0

n′,j ′ | � ΔE . (5.6.4)
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The above condition can always be satisfied by choosing the magnetic field B

to be sufficiently small. The value E0
n,j will then remain constant throughout the

experiment, and the energy difference ΔE within a multiplet will be exceedingly
small with a typical value ΔE � 5× 10−6 eV. Thus the frequency of light emitted
during a transition is ν = ΔE/h � 5× 10−6 eV/h � 109 Hz, which is in the radio
frequency range, while E0

n,j − E0
n,j ′ � 10−2 eV.

An effective method for determining the value of g for different systems is to
measure the frequency of precession,

ωL = g
eB

2m
, (5.6.5)

from which g follows immediately. Once g is known, the energy difference ΔE in
(5.6.3) can also be calculated.

Expressed in terms of ωL, the energy levels (5.6.2) can be written

Ej,j3 =
h̄2j (j + 1)

2I
− h̄ωLj3 ≡ Ej − h̄ωLj3 , (5.6.6)

and the Hamiltonian (5.6.1) can be written as

H0 = J2

2I
− ωLJ3 ≡ H 0 − ωLJ3 . (5.6.7)

5.6.1 Hamiltonian for Magnetic Resonance

To determine the splitting between the two energy levels with j = 1/2 in Fig. 5.5
on the preceding page, a transition must be induced from the lower energy level to
the higher level, which is accomplished by using a second magnetic field B⊥(t).
Assuming g is positive as shown in Fig. 5.5 on the facing page, this transition
would require the spin to flip from the spin-up position j3 = 1/2 to the spin-
down position j3 = −1/2. In the same way that the spin J(t) or magnetic dipole
μ(t) = g(e/2m)J(t) precesses about the e3 direction due to the magnetic field
B in the 3-direction, a field B⊥(t) causes μ(t) to precess about the direction of
B⊥(t). Thus the spin can be flipped from the spin-up to the spin-down position by
a second magnetic field denoted B⊥ that points in a direction e perpendicular to the
e3-direction. After the magnetic dipole moment has precessed 180◦ about B⊥ from
the up position, the spin has flipped to the down position.

If the magnetic dipoles μ(t) were not already precessing about e3 as a result
of B, B⊥ could just be taken to point in the e1-direction. But since the magnetic
dipole is already precessing about the e3 axis, B⊥ must also rotate about the e3 axis
with a frequency ωL so that it keeps in step with the rotating μ(t) that rotates in a
clockwise direction with an angular velocity ωL as given in (5.6.5) . If instead B⊥
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Fig. 5.6 Precession of a classical magnetic dipole caused by a constant, uniform magnetic field B
in the 3-direction and a magnetic field B with a constant magnitude that rotates in the x-y plane

rotated in the opposite direction or with a frequency very different from ωL, then
its effect would just average to zero or produce minor high frequency oscillations in
the precession about e3.

To better understand the effect of the field B⊥, the motion of a classical magnetic
dipole moment is depicted in Fig. 5.6.

As shown in Fig. 5.6a, at t = 0, B⊥ is assumed to be in the e1-direction, and the
angular momentum and μ(t = 0) are in the e3-direction. The effect of the magnetic
field B⊥, is that the angular momentum begins precessing about the e1 axis, moving
toward the positive e2 axis. One quarter of a period later, as shown in Fig. 5.6b,
the angular momentum vector J has precessed 90◦ about the e3 axis because of B,
which is in the e3-direction. Additionally, J has precessed an angle θ downward
from the 3 axis because of p. If the torque that B⊥ exerts on the magnetic dipole
moment is to continue to cause precession from the positive e3 axis toward the
negative e3 axis, during the quarter of a period B⊥ must also rotate 90◦ from the
positive e1 axis to the negative e2 axis. Classically the angular momentum will spiral
from the positive e3 axis to the negative e3 axis. The path of the tip of the classical
angular momentum vector is shown in Fig. 5.6c. From this classical discussion the
additional field B⊥ that would cause the spin to precess from the positive e3 axis to
the negative e3 axis must rotate in a clockwise direction (as viewed from positive e3
axis) in the 1–2 plane at a frequency ω (which must be approximately equal to ωL).
Thus B⊥(t) is given by

B⊥(t) = B⊥e (t) = B⊥(e1 cos ωt − e2 sin ωt) , (5.6.8)

where B⊥(t) has arbitrarily been chosen to point in the e1 direction when t = 0.
The Hamiltonian, which determines the dynamics (time evolution) of the system,

is

H(t) = J2

2I
− g

e

2m
B · J− g

e

2m
B⊥(t) · J = H0 +H1(t) . (5.6.9)
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The second and third terms in the above equation are of the same form with each
giving the energy of the magnetic dipole as a result of one of the two magnetic fields.
Expressing g in terms of ωL using (5.6.5), (5.6.9) can be rewritten in the convenient
form

H(t) = J2

2I
− ωLJ3 − ωL

B
B⊥e (t) · J . (5.6.10)

Using the explicit expression e(t) that appears in (5.6.8),

H(t) = J2

2I
− ωLJ3 − ωL

B⊥
B

(J1 cos ωt − J2 sin ωt) . (5.6.11)

The last term can be rewritten by setting θ = −ωt in (5.5.29), which yields the form
of H that will serve as the starting point for the solution:

H(t) = J2

2I
− ωLJ3 − ωL

B⊥
B

eiωtJ3/h̄J1e
−iωtJ3/h̄ = H0 +H1(t) . (5.6.12)

The Hamiltonian (5.6.12) is the Hamiltonian for a magnetic dipole in the presence
of a constant magnetic field B pointing in the e3 direction plus a term proportional
to B⊥/B that accounts for the interaction with the rotating magnetic field. The
experimental arrangement is such that the magnitude B⊥ of the rotating magnetic
field is much smaller than the magnitude B of the static field, B⊥ % B.
Therefore, the motion is dominated by the uniform precession about the e3 axis.
In the Schrödinger picture this is described, according to (5.5.37), by φ(t) =
e−i[h̄j (j+1)t/2I ] eiωLJ3 t/h̄φ(0) = e−iH0t/h̄φ(0).

5.6.2 Magnetic Resonance in the Schrödinger Picture

Magnetic resonance is discussed in the Schrödinger picture using the Hamiltonian
(5.6.12). Because this Hamiltonian is an explicit function of time, ∂H(t)

∂t
�= 0 and

the Schrödinger equation (5.3.9) is not simply solved by (5.3.3) with U(t) as given
by (5.3.8), or by (5.5.37). That is, φ(t) is not given by e−iH(t) t/h̄φ(0). With a little
insight, however, the problem can be reformulated so that it is readily solved. To set
the stage for the solution and further explain the choice of a rotating magnetic field,
the case B⊥ = 0 discussed in the previous section is first reconsidered.

Classically, if the experiment is viewed from a frame of reference that rotates with
an angular frequency ωL about the 3 axis in a clockwise direction as viewed from
above, the direction of the angular momentum vector does not change. If a detector
is put in this moving frame, the expectation value of any component of angular
momentum remains constant in time. So in the rotating frame there does not seem to
be a magnetic field B acting on the magnetic dipole moment μ. If the additional field
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B⊥(t) = B⊥e(t), which is given in (5.6.8) and rotates with the angular frequency
ω = ωL, is applied, in the rotating frame the magnetic dipole moment would only
experience a force resulting from B⊥ and would precess about e(t). If B⊥ rotates
at ω = ωL in the 1–2 plane, from the point of view of the rotating frame, B⊥ is
constant and B always points in the 3-direction. In this frame the Hamiltonian is
time-independent! The strategy, then, is to first solve the Schrödinger equation for
the state vector in the rotating frame and then transform the solution to the laboratory
frame.

In the laboratory frame the state φ(t) obeys the Schrödinger equation with the
Hamiltonian given by (5.6.12),

ih̄
d

dt
φ(t) =

(

J2

2I
− ωLJ3 − ωL

B⊥
B

eiωt J3/h̄J1e
−iωt J3/h̄

)

φ(t) . (5.6.13)

Because eiωtJ3/h̄ commutes with J 2 and J3, (5.6.13) can be rewritten as

ih̄
d

dt
φ(t) = eiωtJ3/h̄

(

J2

2I
− ωLJ3 − ωL

B⊥
B

J1

)

e−iωtJ3/h̄φ(t) . (5.6.14)

Multiplying (5.6.14) by the unitary operator e−iωtJ3/h̄ and using

e−iωtJ3/h̄ih̄
d

dt
φ(t) = ih̄

d

dt

(

e−iωtJ3/h̄φ(t)
)

− ωJ3e
−iωtJ3/h̄φ(t) , (5.6.15)

the Schrödinger equation becomes

ih̄
d

dt

(

e−iωtJ3/h̄φ(t)
)

− ωJ3e
−iωtJ3/h̄φ(t)

=
(

J2

2I
− ωLJ3 − ωL

B⊥
B

J1

)

e−iωtJ3/h̄φ(t) . (5.6.16)

Just looking at the mathematical form of (5.6.16) without any physical insight, the
state φ(t) always appears in the combination e−iωtJ3/h̄φ(t). Consequently (5.6.16)
is a differential equation for the vector φ(t)R defined by

φ(t)R ≡ e−iωtJ3/h̄φ(t) . (5.6.17)

When written in terms of φ(t)R , (5.6.16) becomes

ih̄
d

dt
φ(t)R =

(

J2

2I
+ (ω − ωL)J3 − ωL

B⊥
B

J1

)

φ(t)R . (5.6.18)
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Fig. 5.7 A frame rotating about the 3 axis in a clockwise direction as viewed from above

The above equation is the Schrödinger equation for a new state vector φ(t)R with
the time-independent Hamiltonian

HR = J2

2I
+ (ω − ωL)J3 − ωL

B⊥
B

J1 , (5.6.19)

implying that the solution to (5.6.18) is

φ(t)R = e−iHR t/h̄φ(0)R = e−i[(J2/2I )+(ω−ωL)J3−ωL(B⊥/B)J1]t/h̄φ(0)R

= e−i[H 0+(ω−ωL)J3−ωL(B⊥/B)J1]t/h̄φ(0)R . (5.6.20)

The above result could have been anticipated. When the magnetic field B⊥(t),
which rotates about the 3 axis with an angular velocity ω in a clockwise direction,
was introduced, a time-dependent interaction term had to be added to the Hamilto-
nian. But in a frame that rotates precisely as B⊥ rotates, B⊥ is stationary and the
Hamiltonian is time-independent. Thus φ(t)R is just the state in the rotating frame.

In Fig. 5.7 the frame is shown rotating in a clockwise direction about the 3 axis
with an angular velocity ω. From an apparatus in the rotating frame, any state in
the laboratory frame of reference is rotating about the 3 axis in a counterclockwise
direction with an angular velocity ω. After a time t , from the perspective of the
rotating frame, a state in the lab frame will have rotated an angle ωt about the 3 axis
in a counterclockwise direction. According to (5.5.22) the operator that effects this
rotation is e−iωtJ3/h̄,

φ(t)rotating frame = e−iωt J3/h̄φ(t) , (5.6.21)
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where φ(t) is the state in the lab frame. Comparing (5.6.17) and (5.6.21), φ(t)R ,
which was introduced by examining the Schrödinger equation from a math-
ematical point of view, is indeed the state in the rotating frame, φ(t)R =
φ(t) rotating frame. Regardless of whether mathematical or physical insight is
used, the same conclusion is reached: the Hamiltonian is time-independent in the
rotating frame.

Since any of these vectors has total angular momentum j , the first term in
the exponent of (5.6.20) contributes only an overall phase e−i[h̄j (j+1)]/2I ]t . Thus
as can be seen from (5.6.20), in the rotating frame the time evolution of φ(t)R
resulting from the two magnetic fields B and B⊥(t) is a rotation about e1 caused
by e−i[−ωL(B⊥/B)J1]t/h̄ and a rotation about e3 caused by e−i(ω−ωL)J3t/h̄. Using the
same procedure employed in Example 5.5.4 on page 282, these two rotations can be
expressed as a single rotation about a unit vector n,

n =
(

−ωL
B⊥
B

e1 + (ω − ωL)e3

)

√
(

ωL
B⊥
B

)2 + (ω − ωL)2

. (5.6.22)

The component of the angular momentum along n is

n · J =
−ωLB⊥

B
e1 · J+ (ω − ωL)e3 · J

√
(

ωL
B⊥
B

)2 + (ω − ωL)2

= −ωL
B⊥
B

J1 + (ω − ωL)J3
√
(

ωL
B⊥
B

)2 + (ω − ωL)2

. (5.6.23)

Using the above result, (5.6.20) can be written as

φ(t)R = e−iH 0t/h̄e−i
√

ωL(B⊥/B])2+(ω−ωL)2 n·J]t/h̄φ(0)R

= e−iH 0t/h̄e−i Ω n·J t/h̄φ(0)R , (5.6.24)

where Ω is defined by

Ω =
√
(

ωL
B⊥
B

)2

+ (ω − ωL)2 . (5.6.25a)

From the discussion in the previous section, the exponential e−i Ω n·J t/h̄ describes a
counterclockwise rotation about n by an angle

√
(

ωL
B⊥
B

)2

+ (ω − ωL)2 t ≡ Ωt . (5.6.25b)
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Fig. 5.8 Rotations required to obtain φ(t) from φ(0) in a magnetic resonance experiment when
ω = ωL. (a) Rotation by an angle (ωLBL/B) t about the e1 axis (b) Rotation by an angle −ωLt

about the e3 axis

Once the state φ(t)R is known in the rotating frame, (5.6.21) immediately gives the
state φ(t) in the laboratory frame,

φ(t) = eiωtJ3/h̄φ(t)R ,

= eiωtJ3/h̄e−iH 0t/h̄e−i Ω n·J t/h̄φ(0)R . (5.6.26)

Noting from (5.6.21) that at t = 0 the state in the rotating frame coincides with that
in the laboratory frame, φ(0)R = φ(0) so (5.6.26) can be expressed as

φ(t) = e−iH 0t/h̄e−i(−ωt)J3/h̄e−iΩn·Jt/h̄φ(0) , (5.6.27)

which is the result for any rotationally invariant Hamiltonian H 0. The above
equation shows that the state φ(t) is obtained by first rotating the state φ(0) about
n by an angle Ωt and then rotating the resulting state about e3 by an angle −ωt . If
ω = ωL, then from (5.6.22) n = −e1. For this case it then follows from (5.6.27) that
the state first rotates about the −e1 axis by an angle Ω t = (ωLB⊥/B) t and then
rotates about the e3 axis by an angle −ωLt . These rotations are shown in Fig. 5.8.
For the case that B⊥ is zero, n = 0 and (5.6.27) becomes the result (5.5.37),
which is a state precessing clockwise about the e3 axis at the Larmor frequency
ωL. The second term in (5.6.11), which occurs because of the magnetic field in the
3 direction, causes the energy level En,j (= h̄2 j (j + 1)/2I for the rotator) to split
into the two sublevels shown in Fig. 5.5 on page 284.

The probability is now calculated for obtaining the value j3 = −1/2 in a
measurement of J3 at time t if, at time t = 0, the system is in a state φ(0) with
j3 = 1/2. That is, the initial state is one for which the probability of obtaining a
value j3 = 1/2 for the observable J3 is unity. Thus |〈φ(0)|j = 1/2, j3 = 1/2〉|2 =
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1 and |〈φ(0)|j = 1/2, j3 = −1/2〉|2 = 0, implying that, except for a possible
phase, the state vector at time t = 0 is given by

φ(0) = |j = 1/2, j3 = 1/2〉 . (5.6.28)

The probability that the spin has flipped at a time t is the probability for obtaining
the value j3 = −1/2 in a measurement of J3 in the state φ(t). Mathematically this
probability is the expectation value of the projection operator

Λ−1/2 = |j = 1/2, j3 = −1/2〉〈j = 1/2, j3 = −1/2|

in the state φ(t):

Pφ(t)(Λ−1/2) = |〈j = 1/2, j3 = −1/2|φ(t)〉|2 . (5.6.29)

Using (5.6.27) and (5.6.28),

Pφ(t)(Λ−1/2) =
= |〈j = 1/2, j3 = −1/2|e−i(J2/2I )t/h̄e−i(−ωt)J3/h̄e−iΩtn·J/h̄|j = 1/2, j3 = 1/2〉|2 .

(5.6.30)

Recalling that J2 and J3 are hermitian and letting J2 and then J3 act to the left,
the first two exponential terms only yield phase factors that don’t contribute to an
absolute value. The matrix element of the third exponential,

Pφ(t)〈Λ−1/2) = |〈1/2, −1/2|e−iΩtn·Ĵ/h̄|1/2, 1/2〉|2 , (5.6.31)

can be simplified using (5.5.60) to yield

Pφ(t)〈Λ−1/2) = |〈1/2, −1/2| cos
Ωt

2
− 2i

h̄
n · J sin

Ωt

2
|1/2, 1/2〉|2 . (5.6.32)

Inserting the explicit expression (5.6.23) for J into (5.6.32),

Pφ(t)(Λ−1/2)

=

∣
∣
∣
∣
∣
∣
∣
∣

〈1/2, −1/2| cos
Ωt

2
− 2i

h̄

(

−ωL
B⊥
B

J1 + (ω − ωL)J3

)

√
(

ω B⊥
B

)2 + (ω − ωL)2

sin
Ωt

2
|1/2, 1/2〉

∣
∣
∣
∣
∣
∣
∣
∣

2

.

(5.6.33)
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From (2.3.37), (2.3.19), and (2.3.43), the matrix elements in (5.6.33) are found to
have the following values:

〈j = 1/2, j3 = −1/2|j = 1/2, j3 = 1/2〉 = 0 ,

〈j = 1/2, j3 = −1/2|J3|j = 1/2, j3 = 1/2〉 = 0 ,

〈j = 1/2, j3 = −1/2|J1|j = 1/2, j3 = 1/2〉 = h̄/2 .

Thus for a transition from the lower level of Fig. 5.5 when j3 = +1/2 to the upper
level with j3 = −1/2 that occurs when energy is absorbed, the probability for spin
flip is

Pφ(t)(Λ−1/2) =
(

ωL
B⊥
B

)2

(

ωL
B⊥
B

)2 + (ω − ωL)2
sin2 Ωt

2
, (5.6.34)

where Ω is given in (5.6.25a).
In (5.6.34) the probability is a product of two functions. As expected the periodic

function sin2(Ω t/2) has a first maxima when the state has rotated half a revolution,
Ω t = π , and then has further maxima when the state has rotated Ω t = 3π, 5π . . . .
The spin-flip probability is zero when the state has not rotated, Ω t = 0, or when it
has rotated an integer number of revolutions, Ω t = 2π, 4π, . . . .

The probability (5.6.34) also depends on the function f (ω) where, according to
(5.6.34),

f (ω) =
( γ

2

)2

(ω − ωL)2 + ( γ
2

)2 ,
γ

2
≡ ωL

B⊥
B

. (5.6.35)

The function f (ω) is characterized by two parameters, the location of its maximum
value at ω = ωL and by γ , its width at half the maximum value. The function
is called a Lorentzian or a Breit-Wigner probability with resonance parameters ωL

and γ . Formulas of the form (5.6.35) occur in all resonance phenomena and are
important functions in quantum physics. The probability of spin flip is plotted as a
function of ω in Fig. 5.9 on the following page at the time t = π/Ω .

If the frequency ω of the rotation of the magnetic field B⊥(t) about the 3 axis as
given in (5.6.8) is very different from ωL, the maxima at t = π/Ω , etc. are shallow
as shown in Fig. 5.10a. But as ω approaches ωL, the function f (ω) approaches
unity, and the probabilities at t = tmax = π/Ω , etc. also become unity, implying
with certainty that the spin has flipped as shown in Fig. 5.10b.

By choosing the initial state with spin up (j3 = +1/2), the case has been
considered for which the quantum system with magnetic moment μ = g(e/2m)J
is initially in the lower of the two energy levels in Fig. 5.5 on page 284. The case
where the spin is initially down could instead have been chosen. The probability that
the spin has flipped up at time t , and energy has been removed, can also be shown
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Fig. 5.9 Probability of a spin flip as a function of the angular frequency ω of the rotating magnetic
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0.2

0.4

0.6

0.8

1

0.2

0.4

0.6

0.8

1

(a) (b)

Fig. 5.10 Transition probability between the spin-up and spin-down states caused by a rotating
magnetic field B⊥(t). Far from the resonance (a) the transition probability is small, and at
resonance (b) there exist times when the transition probability is unity even when the field B⊥(t)

is small

to be given by (5.6.34) as can be readily checked. (See Problem 5.22.)

Pφ(t)(Λ1/2) =
(

ωL
B⊥
B

)2

(

ωL
B⊥
B

)2 + (ω − ωL)2
sin2 Ωt

2
, (5.6.36)

In deriving (5.6.34) under the influence of the additional rotating—and therefore
time-dependent—magnetic field p(t), the system makes a transition from the lower
to the upper energy level, φ(0) = |1/2, 1/2〉 → |1/2,−1/2〉. Therefore, energy
ΔE = geh̄B/2m is absorbed in this transition. On the other hand, for the
case (5.6.36) the transition is from the upper to the lower energy level, φ(0) =
|1/2,−1/2〉 → |1/2, 1/2〉, and energy is removed from the quantum system. It is
not obvious how to prepare initial states with spin down, φ(0) = |1/2,−1/2〉, or
with spin up, φ(0) = |1/2, 1/2〉.
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5.6.3 Magnetic Resonance Experiments

The experimental setup for a magnetic resonance experiment is sketched in
Fig. 5.11. The sample (water or glycerine for the measurement of the proton
magnetic moment because H2O molecules have zero magnetic moment except for
that due to the protons) is placed in a field B that points in the e3 direction. The
sample is, in addition, surrounded by a coil powered by a radio-frequency current
source that produces a small field B⊥ that oscillates in the e1 direction with a
variable frequency ω. Energy is absorbed by the sample while making the spin-flip
transition, causing a detectable change in the current in the coils. When the energy
supplied to the coils is a maximum, the frequency ω of the rotating field is identical
to the Larmor frequency ωL. Since the value of B is also known, the gyromagnetic
ratio g = 2mωL/eB can be calculated. (In practice it is easier to change B than ω.
Therefore, ωL = eB/2m is changed by changing B until resonance occurs, which
implies ωL = ω.)

The careful reader will have noted that the time-dependent magnetic field
described in the experimental setup does not actually rotate in the laboratory about
the 3 axis with a frequency ω as required by (5.6.8). Instead, the time-dependent
magnetic field used in the experiment is given by

B = 2B⊥(e1 cos ωt)

= B⊥(e1 cos ωt − e2 sin ωt)+ B⊥(e1 cos ωt + e2 sin ωt) . (5.6.37)

The first field in (5.6.37) is the desired field, which rotates about the 3 axis in a
clockwise direction when viewed from the positive 3 axis. The second field rotates
in the opposite direction and can therefore never be in step with the rotating state.
As a consequence, the second field in (5.6.37) never causes resonance behavior (See



296 5 Time Evolution of Quantum Systems

Problem 5.25.) and only introduces high-frequency wiggles in the precession of the
magnetic dipole moments about the 3 axis. These high frequency wiggles have no
net effect on the average motion of the magnetic dipole moments.

The molecules in the sample of water used in the apparatus depicted in Fig. 5.11
on the previous page are in thermal equilibrium and are not in one of the pure states
φ(0) = |1/2,±1/2〉 before the magnetic field is turned on. In thermal equilibrium
the state of the protons in the water sample is a mixed state given by the Gibbs
distribution that will be discussed in the next section. As will be shown, there are
slightly more protons in the lower energy level with spin up than in the upper energy
level with spin down. Therefore, when the rotating magnetic field B⊥(t) is switched
on, there are slightly more protons in the lower energy state making transitions to the
upper energy state than there are protons in the upper energy state making transitions
to the lower energy state. Consequently, a net, detectable energy must be supplied
by the magnet coils to the sample, and this energy is a maximum at ω = ωL. The
maximum in energy is thus detected by measuring the current supplied to the coil
and determining when it is a maximum. Once the resonance frequency ωL and |B|
have been determined to very high precision, from (5.6.5) the Landé g-factor can be
determined to a very high accuracy. For water the magnetic dipole moment is twice
that of a proton and g = 2× (2.792847351± 0.000000028).

5.7 Gibbs Distribution

When the constant magnetic field B = B e3 is introduced, the energy levels Ej =
h̄2j (j + 1)/2I split into sublevels, h̄2j (j + 1)/2I − g(eh̄/2m)Bj3, as shown for
the case j = 1/2 in Fig. 5.5 on page 284. Before the constant magnetic field is
introduced, the state of the ensemble of protons is given by the projection operator
ρ0 onto the two-dimensional angular momentum subspace,

ρ0 = 1

2
[Λj=1/2 +Λj=−1/2] ,= 1

2
[|1/2, j3 = 1/2〉〈1/2, j3

= 1/2| + |1/2, j3 = −1/2〉〈1/2, j3 = −1/2|] . (5.7.1)

For the sample at thermal equilibrium, the state of the ensemble of protons is given
by the Gibbs state that will now be constructed.

Classically if there are N1 objects with energy E1 at thermal equilibrium with N2
objects with energy E2, then according to the Gibbs distribution7

N1

N2
= e−E1/kT

e−E2/kT
, (5.7.2)

7L. D. Landau and E. M. Lifshitz, Statistical Physics 5 V.1 (3 ed.) Pergamon Press, Oxford, 1980).
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where k is Boltzmann’s constant and T is the absolute temperature. Note that fewer
objects are in the state with higher energy because the Boltzmann factor e−E/kT

decreases as the energy E increases. From (5.7.2) the number of objects Ni in the
ith state with energy Ei is proportional to e−Ei/kT . That is,

Ni = Ce−Ei/kT . (5.7.3)

The proportionally constant C can be expressed in terms of the total number of
objects N = N1 + N2 + N3 + . . . in the system. Summing over the index i in
(5.7.3),

∑

Ni = N =
∑

i

Ce−Ei/kT ,

it follows that the constant C is given by

C = N
∑

j e−Ej /kT
. (5.7.4)

Using (5.7.3) and (5.7.4), for a collection with N objects, the probability that an
object is in the ith state is

Ni

N
= Ce−Ei/kT

N
= e−Ei/kT

∑

j e−Ej /kT
. (5.7.5)

If the objects with energy Ei are quantum systems in the i th energy eigenstate
|Ei〉 satisfying H |Ei〉 = Ei |Ei〉, then from (1.3.7) and (1.3.12) the statistical
operator ρ is given by

ρ =
∑

i

Ni

N
|Ei〉〈Ei | . (5.7.6)

Example 5.7.1 Using the fact that the expectation value of an observable A is
Tr(ρA), show that the probability Pρ(A) of detecting energy Ei in the state ρ is
Ni/N .

Solution The operator with an expectation value equal to the probability of
detecting energy Ei in the state ρ, is A = |Ei〉〈Ei |. Thus

Pρ(|Ei〉〈Ei |) = Tr(ρ|Ei〉〈Ei |) = Tr
∑

j

Nj

N
|Ej 〉〈Ej |Ei〉〈Ei | .
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Using the normalization condition 〈Ej |Ei〉 = δi,j and taking the trace

Pρ(|Ei〉〈Ei |) =
∑

k

∑

j

Nj

N
〈Ek|Ej 〉δi,j 〈Ei |Ek〉 = Ni

N
.

Combining (5.7.5) and (5.7.6), the statistical operator ρ for a quantum system at
thermal equilibrium is

ρ =
∑

i e−Ei/kT

∑

j e−Ej /kT
|Ei〉〈Ei | . (5.7.7)

Because |Ei〉 is an eigenstate of H with an eigenvalue Ei ,

ρ =
∑

i e−H/kT

∑

j 〈Ej |e−H/kT |Ej 〉 |Ei〉〈Ei | . (5.7.8)

The desired form for the statistical operator is obtained by recalling that

I =
∑

i

|Ei〉〈Ei | ,

and noting that

∑

j

〈Ej |e−H/kT |Ej 〉 = Tr(e−H/kT ) .

Equation (5.7.8) can then be written as

ρ = e−H/kT

Tr
(

e−H/kT
) , (5.7.9)

which is the statistical operator for a quantum system in thermal equilibrium.
For the ensemble of spin-1/2 magnetic dipole moments precessing in a constant

magnetic field B along the e3 axis, this Gibbs state is now used to calculate the
probability that a dipole is in a spin-down state, j3 = −1/2, or in a spin-up state,
j3 = 1/2. Restricting to the subspace in which the angular momentum has the
single eigenvalue j = 1/2, the notation is simplified by writing |j, j3〉 ≡ |j3〉
where j3 = ±1/2.
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The denominator in (5.7.9) is calculated first using the explicit expression
(5.5.34) for the energy.

Tr
(

e−H/kT
)

=
∑

j3

e−Ej3 /kT = e−E(j3=−1/2)/kT + e−E(j3=1/2)/kT

= e−[3h̄2/8I−geh̄B/2m(−1/2)]/kT + e−[3h̄2/8I−geh̄B/2m(1/2)]/kT

= e−3h̄2/8IkT
[

e−geh̄B/4mkT + egeh̄B/4mkT
]

. (5.7.10)

Substituting (5.7.10) into (5.7.9) and canceling the common factor e−3h̄2/8IkT , the
probability of spin down is

Pρ(Λ−1/2) = e−geh̄B/4mkT

e−geh̄B/4mkT + egeh̄B/4mkT
. (5.7.11)

Similarly, the probability of spin up is

Pρ(Λ+1/2) = egeh̄B/4mkT

e−geh̄B/4mkT + egqh̄B/4mkT
. (5.7.12)

To obtain an estimate of the relative magnitudes of the above two probabilities,
their ratio is calculated for a proton (g = 2.79) at room temperature (293K) in a
typical magnetic field B = 1.0 T, implying geh̄B/4mkT = ωL(h̄/2kT ) = 1.74×
10−6. Therefore,

Pρ(Λ+1/2)

Pρ(Λ−1/2)
= egeh̄B/4mkT

e−geh̄B/4mkT
∼= 1+ 3.49× 10−6 . (5.7.13)

As expected for the Gibbs state (5.7.9), the probability that the magnetic dipole is in
the higher-energy, spin-down state is less than the probability that it is in the lower-
energy, spin-up state. From (5.7.9) and (5.7.10), the density (statistical) operator for
the spin-1/2 magnetic dipole moment in a constant magnetic field B along the e3
axis is

ρ(t = 0)

=
(

e−geh̄B/4mkT |j3 = −1/2〉〈j3 = −1/2| + egeh̄B/4mkT |j3 = 1/2〉〈j3 = 1/2|
)

(

e−gqh̄B/4mkT + egqh̄B/4mkT
) ,

(5.7.14a)

≡ w−|j3 = −1/2〉〈j3 = −1/2| +w+|j3 = 1/2〉〈j3 = 1/2| . (5.7.14b)
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In thermal equilibrium there are more particles in the lower energy state with spin
orientation j3 = 1/2 so the sample has a minute excess magnetic moment parallel
to the e3 axis.

Now consider the situation where the additional magnetic field B⊥(t) is turned
on at time t = 0, and the time development of the state ρ(t), described by the
Hamiltonian (5.6.11), is calculated. As a result of the time-dependent magnetic field,
the state vector |j3 = 1/2〉 evolves into the state vector |j3 = −1/2〉 and vice versa.
To obtain ρ(t) from ρ(t = 0), the Schrödinger state φ(t) is first expressed in terms
of φ(0). From (5.6.27),

φ(t) = eiωJ3t/h̄ e−i[(J2/2I )+Ωn·J]t/h̄φ(0) , (5.7.15)

where Ω is given by (5.6.25a). The Schrödinger states at time t that are in the spin
down state |j3 = −1/2〉 and spin up state |j3 = 1/2〉 at t = 0, respectively, are
denoted φ(t)down and φ(t)up. From (5.7.15),

φ(t)down = eiωJ3t/h̄ e−i[(J2/2I )+Ωn·J]t/h̄
∣
∣
∣−1

2

〉

, (5.7.16a)

φ(t)up = eiωJ3t/h̄ e−i[(J2/2I )+Ωn·J]t/h̄
∣
∣
∣
1

2

〉

. (5.7.16b)

At a later time t the Schrödinger states have evolved in time so that the density
operator is given by

ρ(t) = w−|φ(t)down〉〈φ(t)down| +w+|φ(t)up〉〈φ(t)up| ,

= w−eiωJ3t/h̄ e−i[(J2/2I )+Ωn·J]t/h̄| − 1

2
〉〈 − 1

2
|ei[(J2/2I )+Ωn·J]t/h̄ e−iωJ3t/h̄

+ w+eiωJ3t/h̄ e−i[(J2/2I )+Ωn·J]t/h̄|1
2
〉〈1

2
|ei[(J2/2I )+Ωn·J]t/h̄ e−iωJ3t/h̄ ,

= eiωJ3t/h̄ e−i[(J2/2I )+Ωn·J]t/h̄ρ(0)ei[(J2/2I )+Ωn·J]t/h̄ e−iωJ3t/h̄ . (5.7.17)

Since the probability (5.6.34) for flipping the spin from up to down is the same
as the probability (5.6.36) for flipping the spin from down to up, there would be no
net energy absorption by the sample if both states were initially equally populated.
As will now be shown, the excess population of the lower energy level described by
the thermal equilibrium state (5.7.14) makes the measurement of ωL possible.

In analogy with the calculation of (5.6.33) for Pφup(t)(Λ−1/2) with φup(0) =
|j3 = 1/2〉, the probability Pρ(t)(Λ−1/2) is calculated for the angular momentum
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component to be j3 = −1/2 in the state ρ(t) that is in thermal equilibrium (5.7.14)
at time t = 0. This probability is given by

Pρ(t)(Λ−1/2) = Tr

(

ρ(t)|j3 = −1

2
〉(j3 = −1

2
|
)

=
j3=1/2
∑

j3=−1/2

〈j3|ρ(t)| − 1

2
〉〈 − 1

2
|j3〉 = 〈 − 1

2
|ρ(t)| − 1

2
〉 . (5.7.18)

Inserting ρ(t) from (5.7.17) into (5.7.18) and then using the expression for ρ(0)

given in (5.7.14b),

Pρ(t)(Λ−1/2) = 〈 − 1

2
|eiωJ3t/h̄ e−i[(J2/2I )+Ωn·J]t/h̄

[

w−| − 1

2
〉〈 − 1

2
| + w+|12 〉〈

1

2
|
]

× ei[(J2/2I )+Ωn·J]t/h̄ e−iωJ3t/h̄| − 1

2
〉 . (5.7.19)

Since the operator J2 commutes with all other operators in (5.7.19) and always has
the same value j (j + 1)h̄2 = 3h̄2/4, it contributes only a phase that cancels out of
the formula. The terms e±iωJ3t/h̄ also yield phases that cancel. Thus,

Pρ(t)(Λ−1/2) = w−〈 − 1

2
|e−iΩn·Jt/h̄| − 1

2
〉〈 − 1

2
|eiΩn·Jt/h̄| − 1

2
〉

+w+〈 − 1

2
|e−iΩn·Jt/h̄| + 1

2
〉〈 + 1

2
|eiΩn·Jt/h̄| − 1

2
〉

= w−|〈 − 1

2
|e−iΩn·Jt/h̄| − 1

2
〉|2 +w+|〈 − 1

2
|e−iΩn·Jt/h̄|1

2
〉|2 . (5.7.20)

Since j = 1/2, the above equation can be simplified using (5.5.60),

Pρ(t)(Λ−1/2) = w−|〈 − 1

2
|
(

cos
Ωt

2
− 2i

n · J
h̄

sin
Ωt

2

)

| − 1

2
〉|2

+w+|〈 − 1

2
|
(

cos
Ωt

2
− 2i

n · J
h̄

sin
Ωt

2

)

|1
2
〉|2 . (5.7.21)

Using the expression for n · J of the dipole, which is given by (5.6.23), and the
following values for matrix elements,

〈j3 = −1

2
|J1|j3 = −1

2
〉 = 0 , 〈j3 = −1

2
|J3|j3 = −1

2
〉 = − h̄

2
,

〈j3 = −1

2
|J1|j3 = 1

2
〉 = h̄

2
, (j3 = −1

2
|J3|j3 = 1

2
〉 = 0 ,
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that are readily calculated from (2.3.19) and (2.3.43), (5.7.21) yields

Pρ(t)(Λ−1/2) = w−

∣
∣
∣
∣
∣
∣

⎛

⎝cos
Ωt

2
− 2i

1

2

(ω − ωL)
√

(ωL
B⊥
B

)2 + (ω − ωL)2
sin

Ωt

2

⎞

⎠

∣
∣
∣
∣
∣
∣

2

+w+

∣
∣
∣
∣
∣
∣

⎛

⎝2i
1

2

(ωL
B⊥
B

)
√

(ωL
B⊥
B

)2 + (ω − ωL)2
sin

Ωt

2

⎞

⎠

∣
∣
∣
∣
∣
∣

2

. (5.7.22)

The probability of obtaining the value j3 = −1/2 can be written in a more
transparent form by introducing the quantity ε defined by w+ ≡ w−(1 + ε).
According to (5.7.13), at room temperature,

w+
w−

= 1+ ε = 1+ 3.49× 10−6 , (5.7.23)

implying that ε = 3.49× 10−6. Then (5.7.22) can be rewritten in the desired form

Pρ(t)(Λ−1/2) = w−

(

1+ ε
(ωL

B⊥
B

)2

(ωL
B⊥
B

)2 + (ω − ωL)2
sin2 Ωt

2

)

. (5.7.24)

The above formula is the analog of equation (5.6.34) that gives the probability of
measuring the value j3 = −1/2 at the time t if the initial state at t = 0 is the pure
state ρ(0) = |j3 = 1/2〉〈j3 = 1/2|. If all magnetic moments of the ensemble of
hydrogen atoms in the water sample of the experiment in Fig. 5.11 on page 295 were
in the lower state |j3 = 1/2〉 of Fig. 5.5 on page 284 at t = 0, then the probability
of measuring the magnetic moments in the upper state |j3 = −1/2〉 of Fig. 5.5
is given by (5.6.34). In a realistic experiment such as that depicted in Fig. 5.11,
the state of the magnetic moments of the hydrogen atoms is a mixture given by
(5.7.14), describing an ensemble of a large number (≈ NAvogadro) of magnetic
moments distributed with weights w+ and w− over the two states |j3 = ±1/2〉.
After the state ρ(t) in (5.7.17) has evolved as required by the Hamiltonian H(t) in
(5.6.9), the probability of measuring the value j3 = −1/2 is given by (5.7.24). At
time t the probability has increased by the second term in (5.7.24) over its value
Pρ(0)(Λ−1/2) = w− at time t = 0. The additional potential energy of the magnetic
dipoles increases from a minimum at t = 0 to a maximum when Ω t/2 = π/2 or
t = π/Ω . This additional energy is supplied by increased current to the transverse
magnetic field coil. When the angular frequency ω with which B⊥(t) rotates in the
plane perpendicular to B is varied, the probability (5.7.24) reaches its maximum
when ω = ωL. Determining the frequency at which maximum energy is supplied
to the coil establishes the value of ωL = geB/2m. The Landé factor g can then be
determined with high accuracy from ωL.
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If the state ρ(t) of the magnetic moments of the hydrogen atoms in the water
sample of the experiment in Fig. 5.11 on page 295 were not in thermal equilibrium
(5.7.14), but instead were in an ensemble in which both states |j3 = ±1/2〉 were
equally populated, the state would be an ensemble in which w− = w+ = 1/2 or
ε = 0. Then from (5.7.24)

Pρ(t)(Λ−1/2) = w− = w+ = 1

2
.

The probability of the transition would be constant in time and, more importantly,
independent of the frequency ω. Only the term proportional to the minute factor ε in
(5.7.24) leads to the typical Lorentzian resonance shape Fig. 5.9 on page 294 with
a peak at the resonance frequency ω = ωL and a half-width γ /2 = ωLB⊥/B .

5.8 Summary

Time development in quantum mechanics can described by the time-dependent
Schrödinger (5.3.9) and by Heisenberg’s equation of motion (5.4.3). In the
Schrödinger picture all time dependence resides in the Schrödinger states φS(t). If
the Hamiltonian H is not an explicit function of time,

φS(t) = U(t)φS(0) , where U(t) = e−itH/h̄ , −∞ < t < ∞ .

U(t) is the time-translation operator. The Schrödinger operators AS do not change in
time. In the Heisenberg picture all time dependence resides in the operators AH(t).
If the Hamiltonian is not an explicit function of time,

AH(t) = U†(t)AH(0)U(t) .

The Heisenberg states do not change in time.
If the Hamiltonian is not an explicit function of time, the Heisenberg and

Schrödinger states and operators are related as follows:

φH = φS(0) = U†(t)φS(t) , AS = AH(0) = U(t)AH(t)U†(t) .

Eigenvectors of operators in the Schrödinger picture are constant in time and are
given by |an, t = 0〉while eigenvectors |an, t〉 of operators in the Heisenberg picture
change in time,

|an, t〉 = U†(t)|an, 0〉 .
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If the states and operators in any two pictures #1 and #2 are related by the relations

φ2 = U†φ1 , A2 = U†A1U ,

where U is a unitary operator, the expectation value of an operator is the same in
either picture.

When a classical spinning particle with mass m and charge q is placed in a
constant magnetic field B, the orbital angular momentum l of the particle satisfies

d l
d t
= τ = μ× B ,

where μ = (q/2m) l is the classical magnetic moment of the spinning particle. If
the z axis is chosen in the direction of B, the solution to the above equation is

lx(t) = lx(0) cos ωt + ly(0) sin ωt ,

ly(t) = −lx(0) sin ωt + ly(0) cos ωt ,

lz(t) = lz(0) ,

where the angular frequency ω = (q/2m)B is called the classical Larmor frequency.
Classically the angular momentum precesses about the magnetic field at the classical
Larmor frequency.

The Hamiltonian for a quantum particle with spin J, moment of inertia I and
magnetic moment μ = g(q/2m)J is

H = J2

2I
− μ · B .

In the Schrödinger picture, if the system is in the initial state |j, j1〉 at time t = 0,
at a later time t the system is in the state φ(t),

φ(t) = e−iH t/h̄|j, j1〉 = e−i[h̄j (j+1)/2I ]teiωL tJ3/h̄|j, j1〉 ,

where ωL = g(q/2m)B is the Larmor frequency of a spinning particle with a Landé
factor g. In the Schrödinger picture the operators Ji are time-independent, and the
expectation value of an operator Ji at any time t is given by 〈φS(t)|Ji |φS(t)〉.

In the Heisenberg picture all time dependence resides in the operators Ji that
obey Heisenberg’s equation of motion,

dJi

dt
= − i

h̄
[Ji,H ] + ∂Ji

∂t
.
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Taking the constant, external magnetic field to point in the z direction, the solution
to the above equation is

J1(t) = J1(0) cos ωLt + J2(0) sin ωLt = eiHtJ1(0)e−iH t ,

J2(t) = −J1(0) sin ωLt + J2(0) cos ωLt = eiHtJ2(0)e−iH t ,

J3(t) = J3(0) = eiHtJ3(0)e−iH t .

In the Heisenberg picture all time dependence resides in the operators. Thus if the
system is in a state φ, the expectation value of the operator Ji(t) at any time is
〈φ|Ji(t)|φ〉.

In an ensemble with N objects at thermal equilibrium, there are Ni objects with
energy Ei . The classical probability of detecting an object with energy Ei is

probability of detecting object with energy Ei = Ni

N
= e−Ei/kT

∑

j e−Ej /kT
.

The probability of detecting a particle with energy Ei decreases as Ei increases.
From the above classical equation, it follows that the statistical operator ρ is given
by

ρ = e−H/kT

Tr
(

e−H/kT
) .

Problems

For Sect. 5.3

5.1 Show that U(t) = e−itH/h̄ is a unitary operator, where the operator H = H †,
by establishing the following:

(a) U(0) = I ,

(b) U−1(t) = U(−t) = U†(t)

(c) U(t1 + t2) = U(t1)Ut2) = U(t2)U(t1) ; −∞ < t1 , t2 < +∞ .

5.2 Show that in the Schrödinger picture the density operator ρ(t) =
∑

i ωi |φi(t)〉〈φi(t)| satisfies the von Neuman equation (5.3.12)
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For Sect. 5.4

5.3 Verify that the expectation value of an operator A in the pure state φS(t) is the
same in the Schrödinger, Heisenberg, and interaction pictures.

5.4 By direct differentiation of (5.4.16), show that an operator AH(t) in the
Heisenberg picture satisfies the Heisenberg equation of motion (5.4.3) provided
∂H
∂t
= ∂AS

∂t
= 0.

5.5 By direct differentiation of (5.4.16), show that an operator AH(t) in the
Heisenberg picture satisfies the Heisenberg equation of motion (5.4.3), where ∂H

∂t
=

0 but ∂AS
∂t
�= 0. The operator ∂AH(t)

∂t
is defined to be eiHt/h̄ ∂AS

∂t
e−iH t/h̄.

5.6 Verify the relation

eiBAe−iB = A+ i[B,A] + (i)2

2! [B, [B,A]] + (i)3

3! [B, [B, [B,A]]] + . . . .

Hint Consider a Taylor series expansion of

F(λ) = eiλBAe−iλB =
∞
∑

n=0

λn

n!
(

∂nF (λ)

∂λn

)∣
∣
∣
∣
λ=0

.

By differentiating, it follows that

∂F

∂λ
= eiλBi[B,A]e−iλB,

∂2F

∂λ2 = eiλB(i)2[B, [B,A]]e−iλB, and so forth.

5.7 Consider the harmonic oscillator in one-dimensional space described by the
Hamiltonian H = P 2/2m+KQ2/2 in the Schrödinger picture. Let H

(0)
S = P 2/2m

and H ′
S = KQ2/2.

(a) For the interaction picture calculate Pip and Qip as linear functions of PS ≡ P

and QS ≡ Q. (Hint: Use the identity in Problem 5.6.)
(b) Using your results from (a), calculate H

(0)
ip , H ′

ip, and Hip as quadratic functions
of P and Q.

5.8 By direct differentiation of Aip(t) = U(0)†(t)ASU(0)(t) show that

dAip

dt
= i

h̄

[

H
(0)
ip , Aip

]

+ ∂Aip

∂t
,

where U(0)(t) = e−iH
(0)
S t/h̄ and

∂Aip
∂t

= U(0)†(t) ∂AS
∂t

U(0)(t). Assume that H
(0)
S is not

an explicit function of time.
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5.9 By direct differentiation of φip(t) = U(0)†(t)φS(t) show that

ih̄
dφip(t)

dt
= eiH(0)t/h̄H ′

Se−iH (0)t/h̄φip(t) = H ′
ipφip(t),

where U(0)(t) = e−iH
(0)
S t/h̄. Assume that H

(0)
S is not an explicit function of time.

For Sect. 5.5

5.10 Show that (5.5.9b) and (5.5.10) are a solution of (5.5.7) provided c3 = −c1,
c2 = c4, and ω = geB/2m.

5.11 Using (5.5.7), show that d(l2)
dt
= 0.

5.12 Using (5.5.7), show that d(B·l)
dt

= 0.

5.13 Show that 〈j, j1|J1|j, j1〉 = h̄j1 and that 〈j, j1|J2|j, j1〉 = 〈j, j1|J3|j, j1〉 =
0. (Hint: Use results from Chap. 3 after making the substitution z → x, x → y,
y → z.)

5.14 Calculate 〈j = 1/2, j1|J3|j = 1/2, j ′1〉 for the four possible combinations of
values of j1 and j ′1. (Hint: Use results from Chap. 2 after making the substitution
z → x, x → y, y → z.)

5.15 Calculate

〈j = 1/2, j3 = −1/2|J2|j = 1/2, j3 = 1/2〉

and

〈j = 1/2, j1 = −1/2|J3|j = 1/2, j1 = 1/2〉.

By drawing a coordinate system, explain why the above two matrix elements are
equal.

5.16 By means of a diagram similar to Fig. 5.2 on page 272, explain why
e−iθJ3/h̄J2e

iθJ3/h̄ must equal −J1 sin θ + J2 cos θ . Verify this equality by using
the identity (5.5.30).

5.17 Using the fact that in the Schrödinger picture operators are time-independent
AS(t) = AS(0), for the Hamiltonian in (5.5.34), calculate JH(t) using (5.4.16),
which relates operators in the two pictures. Equation (5.5.29) and the corresponding
relationship for J2 given in the previous problem are useful.
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5.18 Show that equations (5.5.48) can be written as the single vector equation

J(t) = e−iωLJ3(0)t/h̄J(0)eiωLJ3(0)t/h̄ .

Would the above equation still be valid if J3(0) were replaced by J3(t) in the
exponent?

5.19 Verify that e−ih̄j (j+1)t/2IeiπJ3/(2h̄)|j, j1〉 is an eigenstate of J2 with eigen-
value−h̄j1.

5.20 Show that for spin j = 1/2, φ(t) as given in (5.5.37) can be written as

φ(t) = e−ih̄j (j+1)t/2I

[

cos
ωLt

2
+ 2i

h̄
J3 sin

ωLt

2

]

|j = 1/2, j1〉.

Using the above result, calculate the expectation value of J1 in the state φ(t) and
verify that (5.5.39) is correct when j = 1/2.

For Sect. 5.6

5.21 The state vector in a frame rotating about the 3 axis with an angular velocity
ω is related to the state vector in the laboratory frame by (5.6.17). Using a
transformation of the form HR = U†HU , calculate the Hamiltonian in the rotating
frame if it is given by (5.6.12) in the laboratory frame.

5.22 Assume that the spin of the magnetic dipole moment is initially down. As a
function of time, calculate the probability that the spin has flipped up.

5.23 Equation (5.6.34) gives the probability that the spin has flipped to the down
position. By a direct calculation verify that the probability the spin has not flipped
is

Pφ(t)(Λ1/2) = cos2 Ωt

2
+ (ω − ωL)2

(

ωL
B
B

)2 + (ω − ωL)2
sin2 Ωt

2
.

From general principles what must be the value of the sum

Pφ(t)(Λ−1/2)+Pφ(t)(Λ1/2)?

Verify that (5.6.34) and the expression for Pφ(t)(Λ1/2) that you calculated satisfy
this condition.
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5.24 Calculate the expectation value of J3 in the state φ(t) given by (5.6.27).
Assume φ(0) = |j = 1/2, j3 = 1/2〉. Explain why

〈φ(t)|J3|φ(t)〉 = h̄

2
Pφ(t)(Λ1/2)− h̄

2
Pφ(t)(Λ−1/2),

and check that your answer satisfies this condition.

5.25 Calculate the probability of spin flip for a field B⊥ = B⊥(e1 cos ωt+e2 sin ωt)

(which rotates in the counterclockwise direction when viewed from the positive 3
axis). Show that there is no resonance behavior.

For Sect. 5.7

5.26 An ensemble of harmonic oscillators in one-dimensional space is in thermal
equilibrium at a temperature T . Find the probability that a harmonic oscillator has
an energy En = h̄ω(n + 1/2). Assume E−h̄ω/kT % 1 and express the answer in
terms of ω, T , and n.



Epilogue

The guiding principle in the presentation of quantum physics was the symmetry
of the specially chosen systems, for which experimental data existed. This led
us to the introduction of the basic concepts of quantum mechanics, including the
notion of a state, an observable (linear operator in the vector space of the states)
and the expectation value of an observable. By the same method, we have also
discussed the time evolution of the physical systems. Our discussion introduced all
mathematical concepts of quantum physics in an elementary way, while preserving
the mathematical precision. We hope that a reader or a student, after studying
our book will understand what quantum physics is, how it can be applied to the
description of physical systems and above all, that he/she will understand the role
which the symmetry plays in the description of the physical systems. This volume
provides the conceptual basis of the forthcoming book, in which we will discuss
further developments of the theory. A large part of our study will be devoted to
the discussion of the scattering theory, theory of resonances and the description of
unstable physical systems. We will also analyze the behavior of quantum systems in
the slowly changing environment and the role of the quantum phase factors in such
a description. As seen in this volume, our presentation will emphasize the simple
description of complicated physical systems, using mathematically precise tools.

© Springer Nature B.V. 2019
A. Bohm et al., Quantum Physics, https://doi.org/10.1007/978-94-024-1760-9

311

https://doi.org/10.1007/978-94-024-1760-9


Appendix: Mathematical Preliminaries

A.1 Introduction

A major new development in physics usually necessitates a corresponding develop-
ment in mathematics. For example, differential and integral calculus were developed
for classical mechanics to provide precise definitions for notions such as velocity
and acceleration. It is true that special situations in mechanics can be treated without
calculus, but the understanding remains vague without using calculus.

Quantum mechanics also has its own mathematical language, which was devel-
oped for the specific requirements of quantum physics—the physics of atoms,
molecules, nuclei, and subatomic particles. The mathematical developments went
hand-in-hand with the development of these areas of physics.

The mathematics of quantum mechanics uses vectors in linear, scalar-product
spaces; linear operators; and algebras of operators in these spaces. Without the use
of this mathematics, it is still possible to discuss some of the experimental data
and to understand certain aspects of quantum mechanics. But the understanding is
restricted in scope: a comprehensive understanding of the new ideas of quantum
physics requires the use of its own mathematical language, which was discovered
and developed for this very purpose.

Some of the key ideas of the mathematics of quantum mechanics as well as the
notation are presented here without giving mathematical proofs. The treatment here
is elementary, yet sufficiently detailed that it is possible to begin discussing quantum
physics in its most general form with the mathematical tools presented here. Later,
as required by the physics, additional mathematical concepts are introduced.

The mathematics that will be discussed here may be considered abstract as
compared with differential operators or matrices. However, this is actually not the
case. The one is as real as the other or, more precisely, as abstract as the other. A
mathematical structure is a structure that exists in our minds. It is obtained by taking
a set of mathematical objects and equipping this set with a structure by defining
relations among these objects. Only familiarity makes some aspects of mathematics
seem more real than others. Here in this introductory chapter, rather than treating
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the mathematics of quantum mechanics abstractly, each operation in a general linear
space is motivated by first examining the corresponding operation in the familiar
three-dimensional vector space. Also, when the properties of scalar-product spaces
are discussed, each property is first shown to exist both for the scalar product in
three-dimensional vector space and for the scalar product expressed as an integral.

The mathematical language of quantum mechanics was created so that quantum
mechanics could be expressed in its general form. In 1926 P. Jordan and F. London
started from the classical canonical transformations and recognized that these were
coordinate transformations of a linear space. Physical quantities such as the intensity
of radiation as an electron in an atom drops to a lower state were found to be
represented by matrices. These matrices turned out to be matrices of operators
in this linear space. First, Jordan and London considered only matrices and basis
systems with discrete indices. The extension of the transformation theory to objects
with continuous indices was done by Jordan and in particular by P.A.M. Dirac
(1926–1927). Dirac’s formalism was simple and beautiful but did not satisfy the
requirement of mathematical rigor. The first rigorous mathematical formulation
was given by D. Hilbert, L. Nordheim, and in particular by John von Neumann
(1927) who associated the notions of quantum mechanical states and observables
with vectors and operators, respectively, in the Hilbert space. Von Neumann’s
Hilbert space formulation could not accommodate objects with continuous indices
and continuous eigenvalues. The mathematically rigorous formulation of quantum
mechanics that includes the Dirac formalism, upon which our presentation here is
based, was only possible after L. Schwartz (1950) had developed his distribution
theory, and I.M. Gelfand and collaborators (1960) had introduced the rigged Hilbert
space.

A.2 Linear, Scalar-Product Spaces

Linear spaces and linear operators are a generalization of certain aspects of three-
dimensional space. The usual three-dimensional space consists of vectors that
can be multiplied by real numbers and acted on by transformations or tensors.
Mathematical objects such as vectors in three-dimensional space obey certain rules.
To formulate the rules for a general, linear space, the rules from three-dimensional
space are taken as the defining relations for a set of mathematical objects.

The linear spaces that are needed for quantum theory are, in general, not three-
dimensional. They can have any dimension N , often infinite; the numbers are not
real, but usually complex; the transformations are not orthogonal, but unitary; and
the second rank tensors are not finite, but operators that can be represented by
infinite matrices. In what follows, the rules for linear spaces are formulated in
analogy with the usual rules for three-dimensional space.
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Properties of the three
-dimensional space

Defining relations for the
general linear space

�3 Φ

Under addition, two vectors a, b ∈ �3 (i.e.
a, b in the space �3) satisfy

a+ b = b+ a. (A.2.1a)

The addition of two elements ϕ,ψ ∈ Φ is
defined to satisfy

ϕ + ψ = ψ + ϕ. (A.2.1b)

Addition is associative.

(a+ b)+ c = a+ (b + c). (A.2.2a)

Addition is defined to be associative.

(ϕ + ψ)+ χ = ϕ + (ψ + χ). (A.2.2b)

There exists a zero vector with the property

0+ a = a. (A.2.3a)

There exists an element 0 ∈ Φ with the
property

0+ ψ = ψ . (A.2.3b)

A vector can be multiplied with a real
number b.

b(a) = ba ∈ �3 (A.2.4a)

If ψ ∈ Φ and b ∈ C (b is a complex number),
then

b(ψ) = bψ ∈ Φ . (A.2.4b)

Multiplication of a vector by real numbers a

and b has the following properties:

a(ba) = (ab)a (A.2.5a)

1a = a (A.2.6a)

0a = 0 (A.2.7a)

Multiplication of a vector by complex
numbers a and b has, by definition, the
following properties:

a(bψ) = (ab)ψ (A.2.5b)

1ψ = ψ (A.2.6b)

0ψ = 0 (A.2.7b)

On the left 0 is the number zero and on the right 0 is the element 0 of (A.2.7b).

Multiplication by real numbers satisfy

b(a + b) = ba + bb , (A.2.8a)

(a + b)a = aa+ ba . (A.2.9a)

Multiplication by complex numbers satisfy

b(ϕ + ψ) = bϕ + bψ , (A.2.8b)

(a + b)ψ = aψ + bψ . (A.2.9b)

The negative of a vector is defined by

(−1)a = −a . (A.2.10a)

The negative of a vector is defined by

− 1ψ = −ψ . (A.2.10b)
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Since a, b, and c are called vectors, the elements ϕ,ψ ∈ Φ are also called vec-
tors. The set of mathematical objects ϕ, ψ , etc. that obey rules or axioms (A.2.1b)–
(A.2.10b) is called a linear space; therefore, a linear space is defined by these rules
alone. There are, of course, linear spaces whose objects have more properties than
those stated above, but those additional properties are not necessary for them to be
elements of a linear space.

One realization of an N-dimensional linear space would be by N-dimensional
column matrices whose entries are complex. Another realization of a linear space
is provided by complex, continuous, rapidly decreasing functions for which the
functions themselves as well as all derivatives are square integrable. Because some
people have spent more time studying functions as opposed to, say, matrices, one
person may be more comfortable with one realization than another. Ultimately it is
important to free oneself from all realizations and consider the linear space simply
as a set of thought objects defined by (A.2.1b)–(A.2.10b). In physics the vectors of
the linear space are realized by pure physical states. That is, these thought objects
are used as mathematical images of physical states.

A linear space does not have enough structure to be of much use. To equip it
with more structure, a scalar product is defined. Linear spaces with scalar products
are called linear, scalar-product spaces, Euclidean spaces, or Pre-Hilbert spaces. In
the usual three-dimensional space �3, the scalar product of the vectors a and b is
denoted by a · b and can be calculated using the formula

a · b = axbx + ayby + azbz . (A.2.11)

In a general linear space, the scalar product of two vectors ϕ and ψ will be denoted
by either (ϕ, ψ) or 〈ϕ|ψ〉. Since there are some features of a scalar-product space
that are not present in �3, in addition to �3, a realization of a scalar-product space
by a space of “well behaved” functions will also be used. “Well behaved” means that
all operations performed with the functions are well-defined. For such well-behaved
functions f (x) and g(x), their scalar product is defined by

(f, g) ≡
∫ ∞

−∞
f ∗(x)g(x)dx . (A.2.12)

Note that in contrast to (A.2.11), the scalar product (A.2.12) is, in general, complex.
In formulating the rules for scalar-product spaces, the rule will first be examined in
�3 and then the corresponding rule will be considered for the complex, continuous
functions just mentioned with a scalar product defined in (A.2.12). Finally, a general
rule will be formulated. The scalar product is required to have the following
properties:
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Three-dimensional space
�3

Space of complex, continuous
functions that, along with all
derivatives are square integrable

General scalar-product
space Φ

The scalar product of a
vector with itself is
positive definite,

a · a ≥ 0. (A.2.13a)

The scalar product of a function
with itself is positive definite,

∫ ∞

−∞
f ∗(x)f (x)dx ≥ 0.

(A.2.13b)

In a linear space Φ, the
scalar product of a vector
with itself is positive
definite.

(ψ,ψ) ≥ 0. (A.2.13c)

a · a = 0 iff (if and only
if) a = 0.

∫∞
−∞ f ∗(x)f (x)dx = 0 iff f (x) = 0. For any ψ ∈ Φ (ψ,ψ) = 0

iff ψ = 0.

Since the scalar product
is real, it trivially satisfies

a · b = (b · a)∗.
(A.2.14a)

The scalar product satisfies

(f, g) =
∫ ∞

−∞
f ∗(x)g(x)dx

=
[∫ ∞

−∞
g∗(x)f (x)dx

]∗

= (g, f )∗ . (A.2.14b)

Any two vectors ψ, ϕ ∈ Φ

must satisfy

(ψ, ϕ) = (ϕ,ψ)∗ .

(A.2.14c)

Multiplication by a real
scalar a satisfies

a(a · b) = a · (ab)

= (aa) · b . (A.2.15a)

Multiplication by a complex scalar
satisfies

a(f, g) =
∫ ∞

−∞
f ∗(x)[ag(x)]dx

= (f, ag) =
∫ ∞

−∞
[a∗f (x)]∗g(x)dx

= (a∗f, g) (A.2.15b)

For any ψ, ϕ ∈ Φ and any
a ∈ C,

a(ψ, ϕ) = (ψ, aϕ)

= (a∗ψ, ϕ) . (A.2.15c)

Note that while the convention (A.2.15c) for scalar products is standard in physics,
it is not standard in the mathematical literature where one often finds a(ψ, ϕ) =
(ψ, a∗ϕ) = (aϕ,ψ). That is, the scalar product in mathematical literature is often
defined as the complex conjugate of the definition that is standard in the physics
literature.
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The scalar product of a sum
of vectors is the sum of the
scalar products.

(a+ b) · c

= a · c+ b · c (A.2.16a)

The scalar product of a sum
satisfies

(f + g, h)

=
∫ ∞

−∞
[f (x)+ g(x)]∗h(x)dx

=
∫ ∞

−∞
f ∗(x)h(x)dx

+
∫ ∞

−∞
g∗(x)h(x)dx .

(A.2.16b)

For any ψ, ϕ, χ ∈ Φ

satisfies

(ψ + ϕ, χ)

= (ψ, χ) + (ϕ, χ)

(A.2.16c)

The length or norm of a
vector is

‖a‖ ≡ (a·a)
1
2 . (A.2.17a)

The norm is defined by

‖f ‖ ≡ [
∫ ∞

−∞
f ∗(x)f (x)dx] 1

2 .

(A.2.17b)

(ϕ,ψ) is called the scalar
product of the vectors ϕ and
ψ in the linear space Φ, and
the space Φ is called a lin-
ear, scalar-product space or
Euclidean space. In a scalar-
product space the norm is
defined by the scalar product

‖ψ‖ ≡ (ψ,ψ)
1
2 .

(A.2.17c)

A vector is said to be normal-
ized if ‖ψ‖ = 1.

Two vectors a and b are
orthogonal if

a · b = 0 . (A.2.18a)

Two functions f (x) and g(x) are
said to be orthogonal if

∫ ∞

−∞
f ∗(x)g(x)dx = 0 .

(A.2.18b)

Two vectors ψ and ϕ are
defined to be orthogonal if

(ψ, ϕ) = 0 . (A.2.18c)

Example A.2.1 Consider the following two functions on the interval −∞ < x <

∞:

f1(x) = A1e
−x2/2 f2(x) = A2xe−x2/2

Determine the constants |A1| and |A2| such that f1(x) and f2(x) are normalized.
Are f1(x) and f2(x) orthogonal?

Solution The normalization conditions for the fi(x) are

1 = (fi , fi) =
∫ ∞

−∞
f ∗i (x)fi(x)dx .
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For f1(x), the above integral becomes

1 = |A1|2
∫ ∞

−∞
e−x2

dx = |A1|2√π,

where the integral was evaluated with the aid of a table of integrals. Thus,

|A1| = π−
1
4 .

Similarly,

1 = |A2|2
∫ ∞

−∞
x2e−x2

dx =
√

π

2
,

or

|A2| =
√

2π−
1
4

To determine if f1(x) and f2(x) are orthogonal, their scalar product is calculated:

(f1, f2) =
∫ ∞

−∞
f ∗1 (x)f2(x)dx = A∗1A2

∫ ∞

−∞
xe−x2

dx = 0. (A.2.19)

The above integral is zero from symmetry: By changing to the integration variable
to y = −x, the integral is found to equal the negative of itself and is, therefore, zero.
Since (f1, f2) = 0, the functions are orthogonal.

Example A.2.2 Using (A.2.14c), show that the relation a(ψ, ϕ) = (ψ, aϕ ) implies
the relation a(ψ, ϕ) = (a∗ψ, ϕ ) for a ∈ C.

Solution Taking the complex number to be a∗ instead of a, the first equality
in (A.2.15c) immediately yields

a∗(ϕ,ψ) = (ϕ, a∗ψ).

Taking the complex conjugate of both sides of the above equation

a(ϕ,ψ)∗ = (ϕ, a∗ψ)∗.

Using (A.2.14c) immediately yields the desired equality.
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A.3 Linear Operators

The rules or axioms for linear operators in linear spaces are formulated here in
analogy with operators in three-dimensional space.

Three-dimensional space �3 General scalar-product space Φ

Vectors in �3 can be transformed into other
vectors. One example is the rotation R, which
rotates a vector a into a new vector b = Ra.
There are also other transformations such as the
moment of inertia tensor I that transforms one
vector into another according to j = Iω. These
transformations have the following properties:

R(a+ b) = Ra+ Rb, (A.3.1a)

R(ab) = a(Rb), (A.3.2a)

where a is a real number.

In a linear, scalar-product space transforma-
tions or linear operators are defined as follows:
A function or operator A that maps each vector
ψ ∈ Φ into a vector ϕ ∈ Φ,

ϕ = A(ψ) ≡ Aψ,

is called a linear operator if it obeys the
rules (A.3.1b) and (A.3.2b) listed below. Thus,
by definition, linear operators have the follow-
ing properties:

A(ψ + ϕ) = Aψ +Aϕ, (A.3.1b)

A(aψ) = a(Aψ), (A.3.2b)

where a ∈ C.

Transformations (tensors) in �3 can be added,
multiplied by a real number, and multiplied by
each other.

(R1 + R2)a = R1a+ R2a , (A.3.3a)

(aR1)a = a(R1a) , (A.3.4a)

R1R2a = R1(R2a) . (A.3.5a)

Linear operators A and B can be added, multi-
plied by a complex number, and multiplied by
each other. Then A+ B, a A, and A B are also
linear operators that satisfy

(A+ B)ψ = Aψ + Bψ (A.3.3b)

(aA)ψ = a(Aψ) (A.3.4b)

(A B)ψ = A(Bψ) . (A.3.5b)

The zero transformation 0 and the identity
transformation 1 exist in �3 and are defined,
respectively, by

0a = 0 , (A.3.6a)

1 a = a , (A.3.7a)

for all a ∈ �3.

Operators of special interest are the zero opera-
tor 0 and the unit or identity operator 1 defined,
respectively, by

0 ψ = 0, 0 ∈ Φ , (A.3.6b)

1ψ = ψ , (A.3.7b)

for all ψ ∈ Φ.
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For every hermitian operator R defined for all
vectors in �3, there exists a non-zero vector b
such that

Rb = λb , λ ∈ R . (A.3.8a)

The vector b is called an eigenvector of R and
λ is a (real) eigenvalue of R.

If there exists a non-zero vector ψ such
that

Aψ = λψ , λ ∈ C , (A.3.8b)

then ψ is called an eigenvector of A and λ is
called an eigenvalue of A.

For every operator R defined for all vectors, the
transpose operator RT has the following prop-
erty: Writing the scalar product in components

a · (Rb) =
3
∑

i=1

3
∑

j=1

aiRij bj

=
3
∑

i=1

3
∑

j=1

aiR
T
jibj

=
3
∑

i=1

3
∑

j=1

(RT
jiai )bj = (RT a) · b (A.3.9a)

A linear operator B in the space Φ is called the
adjoint of the operator A if

(ψ,Aϕ) = (Bψ, ϕ) ,

for all ϕ,ψ ∈ Φ. The operator B is denoted
B = A†. The operator A is called self-adjoint
or hermitian1 if

(ψ,Aϕ) = (Aψ, ϕ) , (A.3.9b)

for all ϕ,ψ ∈ Φ.

Example A.3.1 Find the adjoint of the operator R = a d
dx

, a ∈ C, for the space
of complex, continuous functions which, along with all derivatives, are square
integrable.

Solution Integrating by parts,

(f,R g) =
∫ ∞

−∞
f ∗(x) a

dg(x)

dx
dx,

= af ∗(x)g(x)

∣
∣
∣
∣

∞

−∞
−
∫ ∞

−∞

[

a
df ∗(x)

dx

]

g(x)dx.

Since f (±∞) = g(±∞) = 0, the surface term vanishes. Therefore,

(f,R g) =
∫ ∞

−∞

[

−a∗ df (x)

dx

]∗
g(x)dx.

From the definition of the adjoint operator, R† = −a∗ d
dx

.

1For unbounded operators, if (A.3.9b) is fulfilled in a mathematically vague way without specifying
the domain, the operator is often said to be hermitian. When (A.3.9b) is defined precisely
mathematically, the operator is said to be selfadjoint.
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Example A.3.2 Show that the scalar product (Aψ , ψ ) is real if A† = A.

Solution Using (A.2.14c),

(A ψ,ψ)∗ = (ψ,A ψ).

But from the definition (A.3.6b) for the adjoint of an operator,

(ψ,A ψ) = (A†ψ,ψ).

Combining the above two equations,

(A ψ,ψ)∗ = (A†ψ,ψ).

Thus if A† = A, the complex conjugate of the scalar product (Aψ , ψ ) equals itself
and is therefore real.

If ψ is an eigenvector of the operator A, an immediate consequence of Exam-
ple A.3.2 is that all eigenvalues of a hermitian operator are real. For this reason,
hermitian operators are often called real operators.

Example A.3.3 Show that any two eigenvectors ψ , φ of a hermitian operator A

satisfying

A ψ = a1ψ, A φ = a2φ; a1 �= a2,

have the property

(ψ, φ) = 0.

Solution Since φ is an eigenstate of A,

(ψ,A φ) = (ψ, a2φ) = a2(ψ, φ).

Using the Hermiticity of the operator A as given in (A.3.6b),

(ψ,A φ) = (A ψ, φ) = (a1ψ,φ) = a∗1(ψ, φ).

Remembering that the eigenvalues of a hermitian operator are real, subtracting the
above two expressions for (ψ , Aφ ) yields

0 = (a2 − a1)(ψ, φ).

Thus if a1 �= a2, (ψ , φ ) = 0.
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For any two vectors ψ,φ ∈ Φ and an operator A, the scalar product of A ψ

with φ, namely (φ,A ψ), plays an important role in physics and is called the matrix
element of the operator A between the vectors φ and ψ .

Example A.3.4 Calculate the four matrix elements (fi(x), xfj (x)) where f1(x) and
f2(x), respectively, are the normalized functions

f1(x) = π−
1
4 e−x2/2 and f2(x) = √2 π−

1
4 xe−x2/2

first discussed in Example A.3.1 on page 321.

Solution From the definition of a matrix element,

(fi(x), xfj (x)) =
∫ ∞

−∞
f ∗i (x)xfj (x) dx.

Since f1(x) and f2(x) are real,

(f1(x), xf2(x)) = (f2(x), xf1(x)) =
√

2

π

∫ ∞

−∞
e−x2

x2dx = 1√
2
.

Using the procedure mentioned in Example A.2.1 on page 318, the diagonal matrix
elements are found to equal zero,

(f1(x), xf1(x)) = (f2(x), xf2(x)) = 0.

The results can be summarized by the single matrix

(fi(x), xfj (x)) =

⎛

⎜
⎜
⎝

0
1√
2

1√
2

0

⎞

⎟
⎟
⎠

,

where the first index labels the row and the second labels the column of each matrix
element.

All observables such as position, momentum, and energy are represented by
linear operators in a linear, scalar-product space, and states are represented by
vectors in this same space.
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A.4 Basis Systems and Eigenvector Decompositions

A.4.1 Discrete Basis Vectors in Real, Three-Dimensional Space

Three basis vectors are introduced in the three-dimensional space �3,

ei , i = 1, 2, 3 , (A.4.1)

that span the space and are usually normalized to unity,

ei · ei = 1. (A.4.2)

These basis vectors are also usually chosen so that they are orthogonal to one
another,

ei · ej = 0 if i �= j. (A.4.3)

Instead of labeling the vectors by i = 1, 2, 3, they could also be denoted by e1 = ex ,
e2 = ey , e3 = ez. Relations (A.4.2) and (A.4.3) can be written as the single equation

ei · ej = δij =
{

0 for i �= j

1 for i = j
, i, j = 1, 2, 3, (A.4.4)

where δij is the Kronecker-δ. The set of orthogonal, normalized vectors is called an
orthonormal set.

A basis system may be chosen arbitrarily provided it spans the space although,
for a specific physical problem, one basis system may be much easier to work with
than others. For example, for a rigid body with an inertia tensor I , it is helpful to
choose the basis system such that the inertia tensor is diagonal. Therefore, the ei are
chosen such that

ei · I · ej = I (j) δij or I · ej = I (j) ej . (A.4.5)

The ej are the eigenvectors of the tensor I and the I (j) are the eigenvalues.
In �3 every vector x can be expanded in terms of the basis system,

x =
3∑

i=1

xiei = x1e1 + x2e2 + x3e3. (A.4.6)

The numbers xi are the coordinates or components of x with respect to the ei. As
shown in Fig. A.1 on the facing page, the x1, x2, and x3 are, respectively, the x, y,
and z-components of the vector x.
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Fig. A.1 The
three-dimensional vector x
expressed in terms of the
normalized (unit) vectors e1,
e2 and e3

x

x3e3

e1

x2

x1

e2

Z

Y

X

x = x1e1+ x2e2 + x3e3

Taking the scalar product of both sides of (A.4.6) with ej ,

ej · x =
3
∑

i=1

ej · eixi =
3
∑

i=1

δij xi = xj , (A.4.7)

where the orthogonality relation (A.4.4) has been used. Clearly the xi determine the
vector x uniquely. Using the expression for xj in (A.4.7), (A.4.6) can be written in
the form

x =
3
∑

i=1

ei (ei · x) . (A.4.8)

Example A.4.1 Consider the two-dimensional vector V shown in Fig. A.2 on the
next page, which has a magnitude |V|, makes an angle θ with the x̃-axis, and makes
an angle θ ′ with the e1-axis. From geometrical considerations, express V in terms
of the unit vectors x̃ and ỹ and then in terms of e1 and e2. Show that the second
formula agrees with (A.4.7).

Solution The x̃ and ỹ-components of V are clearly |V| cos θ and |V| sin θ ,
respectively. Therefore,

V = |V| cos θ x̃+ |V| sin θ ỹ.

Using similar logic, in terms of the orthonormal basis vectors e1 and e2,

V = |V| cos θ ′e1 + |V| sin θ ′e2.
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Fig. A.2 The
two-dimensional vector V
shown with respect to the x̃, ỹ
basis and the e1, e2 basis

e2

e1

~y

~x

θ

v

θ '

Now from the definition of the dot product,

e1 · V = |e1||V| cos θ ′ = |V| cos θ ′,

and

e2 · V = |e2||V| cos(90− θ ′〉 = |V| sin θ ′.

Combining the above three equations,

V = e1(e1 · V)+ e2(e2 ·V),

which, for two-dimensional vectors V, agrees with (A.4.8).

In �3, the scalar product of the vectors

x =
3
∑

i=1

eixi and y =
3
∑

j=1

ej yj

is calculated as follows:

x · y =
3
∑

i=1

3
∑

j=1

eixi · ej yj
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Using (A.4.4),

x · y =
3
∑

i=1

3
∑

j=1

xi δij yj ,

x · y =
3
∑

i=1

xi yi.

(A.4.9)

The square of the norm (square of the length) of the vector x is given by

‖x‖2 = x · x =
3
∑

i=1

xi xi. (A.4.10)

A.4.2 Discrete Basis Vectors in Infinite-Dimensional, Complex
Space

In a linear, scalar-product space over the complex numbers, it is possible to
introduce, in analogy to Fig. A.1 on page 325, a basis system in a three-dimensional,
complex linear space for which the coordinates xi of a vector ψ are in general
complex numbers. Without any difficulties this three-dimensional space can be
generalized to an N-dimensional space. To go from N dimensions to infinite
dimensions is more difficult: the meaning of convergence of infinite sequences must
be defined, which means that the topology of the linear space Φ must be defined.
This can be done in many different ways, two of which result in the Hilbert space
and the Schwartz space.

In an N-dimensional (or infinite-dimensional) space the basis vectors are denoted

en = |n) or en = |n〉 n = 1, 2, 3, . . .N or ∞ . (A.4.11)

These vectors are again chosen to be orthonormal,

(ei, ej ) = 〈i|j 〉 = δij . (A.4.12)

In an N-dimensional (or infinite-dimensional), complex, linear, scalar-product space
Φ, there exists an orthonormal basis system. That is, every vector ψ ∈ Φ can be
expressed as

ψ =
N or∞
∑

n=1

|en〉cn =
N or∞
∑

n=1

|en〉〈en|ψ〉 , (A.4.13)
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where the coordinates or components cn = 〈en|ψ〉 are complex numbers. To make
the expansions (A.4.13) mathematically rigorous, theorems are required that are not
proved here. Instead the expansions are simply constructed in analogy to (A.4.8).

In analogy with the vectors ei in the three dimensional space �3 that satisfy
(A.4.5), it is often convenient to choose the basis vectors |en〉 to be eigenvectors
of a self-adjoint operator A = A† that is of particular physical significance. The
eigenvectors in the N-dimensional (or infinite-dimensional), linear, scalar-product
space, are solutions of the eigenvalue equation

A|en〉 = an|en〉, |en〉 ∈ Φ, n = 1, 2, 3 . . . . (A.4.14)

In Examples A.3.2 and A.3.3 on page 322 it was established that the eigenvalues
ai of a self-adjoint operator A are real and that two eigenvectors |ei〉 and |ej 〉 with
different eigenvalues ai �= aj are orthogonal. Thus it is possible to normalize2 the
eigenvalues in (A.4.14) such that (A.4.12) is fulfilled.

If |ei〉 is a normalized eigenvector with eigenvalue ai then

|e′n〉 = eiω|en〉, ω ∈ � , (A.4.15)

is also a normalized eigenvector with the same eigenvalue ai (See Problem A.10.)
so the solutions of (A.4.14) are only determined up to a phase factor eiω.

Since only the combination |en〉〈en| appears in (A.4.13) and

|e′n〉〈e′n| = eiω|en〉〈en|e−iω = |en〉〈en| , (A.4.16)

the choice of phase (A.4.15) is of no consequence. The important mathematical
quantities are the projection operators Λn = |en〉〈en| that project onto orthogonal
subspaces,

ΛnΛm = δnmΛn , (A.4.17)

and are independent of the phase. The projection operators have the property that
ΛnV = |en〉〈en|V) = vn|en〉, implying that the projection operator Λn projects out
the component vn of the vector V along the en axis as shown in Fig. A.3 on the
facing page.

Two cases are now distinguished:

1. There is only one normalized eigenvector (up to a phase) for each eigenvalue of
the chosen operator A. The eigenvalues are said to be nondegenerate, and the
projection operator Λn projects onto a one-dimensional subspace.

2. There is more than one normalized eigenvector (up to the phase) for at least
one eigenvalue of the operator A. The eigenvalues are said to be degenerate. A

2If |ei 〉 is not normalized and ‖ |ei〉‖ �= 0, the new vector |e′i 〉 = |ei〉/‖ |ei〉‖ } is a normalized
eigenvector with the same eigenvalue.
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Fig. A.3 The
two-dimensional vector V
with components v1 and v2
along the respective basis
vectors e1 and e2

e2

V

V2

V1 e1

discussion of Case 2 will be postponed until it is needed to describe physical
problems.

Example A.4.2 Show that the functions

f1(x, y) = xe−x2/2 e−y2/2 and f2(x, y) = ye−x2/2 e−y2/2

both satisfy

Afi(x, y) = afi(x, y), i = 1, 2,

where the constant a is the eigenvalue of the operator

A = d2

dx2
− x2 + d2

dy2
− y2.

The coordinates x and y range from −∞ to∞ .

Solution Allowing the differential operator A to act on f1(x, y) and f2(x, y),

Af1(x, y) = −4f1(x, y), Af2(x, y) = −4f2(x, y).

If the functions f1(x, y) and f2(x, y) are labeled only by their eigenvalue a,

fa=−4(x, y) = f1(x, y) and fa=−4(x, y) = f2(x, y).

Since there are two different eigenfunctions fa=−4(x, y), the eigenfunctions of A

are not uniquely specified by the eigenvalue a.
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For Case 1 the eigenvector |en〉 in (A.4.11) is uniquely determined (up to a phase)
by its eigenvalue an. Therefore, the vector |en〉 can be labeled by the value an,

|en〉 ≡ |an〉 n = 1, 2, 3, . . .N . (A.4.18)

The eigenvalue equation (A.4.14) then becomes

A|an〉 = an|an〉, |an〉 ∈ Φ, n = 1, 2, 3 . . . , (A.4.19a)

〈an|am〉 = δnm , (A.4.19b)

and the basis vector expansion (A.4.13) becomes the eigenvector expansion

ψ =
N or∞
∑

n=1

|an〉cn =
N or∞
∑

n=1

|an〉〈an|ψ〉 , (A.4.20)

A complete system of eigenvectors possesses the property that every vector ψ ∈
Φ can be expanded in terms of the |an〉 according to the eigenvector expansion
(A.4.20). Is it possible to find a complete system of eigenvectors |an〉 for every self-
adjoint operator A in a linear scalar product space Φ? When Φ is finite-dimensional,
the answer is “yes,” and when Φ is infinite-dimensional, as is the case for the Hilbert
space, the answer is “no.”

A.4.3 Continuous Basis Systems of a Linear Space

Some properties of physical systems can be described by operators with a complete
set of discrete eigenvectors |an〉, n = 1, 2, 3, . . .. The eigenvalues an represent the
values observed in experiments on quantum physical systems. For example, if the
operator A is the energy operator of the hydrogen atom, the eigenvalues an are the
discrete energy values En = −2πRh̄c/n2, n = 1, 2, 3, . . ., where R is the Rydberg
constant.

On the other hand it is impossible to describe all physical systems with operators
that have discrete spectra. In addition to the discrete eigenvalues En corresponding
to the electron-proton bound states of the hydrogen atom, an electron interacting
with a proton also has continuous values of energy when there is no binding and
the electron is scattered by the proton. The electron’s motion corresponds to the
hyperbolic orbits of the corresponding classical Kepler system. Another operator
with a continuous eigenvalue spectrum is the momentum operator P of electrons in
cathode rays. The operator P can have any of a continuous set of values depending
on the accelerating potential. The position x must similarly be described by an
operator with a continuous eigenvalue spectrum.

Thus in addition to the set of discrete eigenvectors H |En〉 = En|En〉, eigenvec-
tors of energy H , momentum P , position Q, as well as many other operators can
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have continuous eigenvalues:

H |E〉 = E|E〉 , 0 ≤ E < ∞ , (A.4.21a)

P |p〉 = p|p〉 , −∞ ≤ p ≤ +∞ , (A.4.21b)

Q|x〉 = x|x〉 , −∞ ≤ x < +∞ or M ≤ x ≤ N. (A.4.21c)

These are the eigenkets first introduced by Dirac. They are called generalized
eigenvectors and, as in (A.4.21), are denoted by the symbol | 〉 to indicate that the
spectrum of the eigenvalue is continuous.

Since the eigenvalue x of the position operator Q is continuous, it is not possible
to choose eigenvectors such that their (generalized) scalar product is a Kronecker-
δ (A.4.19b) because a Kronecker-δ only involves discrete indices. In spite of this
mathematical complication, it is possible to discuss generalized eigenvectors of
operators with a continuous spectrum in analogy to the discrete case. The starting
point is the eigenvector expansion, which was postulated by Dirac as the continuous
analogue of (A.4.20).

There are spaces, an example of which is the Schwartz space Φ, for which any
vector ψ ∈ Φ can be expanded in terms of the generalized eigenvectors |x〉 of Q

according to

ψ =
∫

dx|x〉〈x|ψ〉 ≡
∫

dx|x〉ψ(x) , ψ(x) ≡ 〈x|ψ〉 . (A.4.22a)

The above equation implies that

〈φ|ψ〉 =
∫

dx 〈φ|x〉〈x|ψ〉 =
∫

dx φ(x)∗ψ(x) , (A.4.22b)

where the integral extends over the continuous set of eigenvalues M< x< N where
often M = −∞ and N = +∞.

To make the transition from (A.4.20) to (A.4.22a), the sum over the discrete
variable n is replaced by a continuous sum (integral) over the continuous variable
x, and the eigenvectors |n〉 are replaced by the generalized eigenvectors |x〉.
Equation (A.4.22a) is called the generalized basis system expansion and was
justified mathematically by the Nuclear Spectral Theorem.3

The coordinates or components ψ(x) ≡ 〈x|ψ〉 = (|x〉, |ψ〉) of the vector ψ

with respect to the basis system |x〉 are the (generalized) “scalar product” between
the vector ψ and the generalized eigenvector |x〉 and are complex numbers just
as the coordinates 〈an|ψ〉 are complex numbers in the discrete case (A.4.20). For
the continuous case the coordinates 〈x|ψ〉are continuous, well-behaved (infinitely

3After Dirac introduced (A.4.22a), approximately 30 years elapsed until Distribution Theory
(L. Schwartz (1950–1951)) and the Rigged Hilbert Space (Gelfand et al., K. Maurin (1955–1959))
provided the mathematics for its justification.
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differentiable, rapidly decreasing) functions of the continuous variable x whereas in
(A.4.20) they are functions of the discrete variable an.

The progression from (A.4.8) to (A.4.22) can be taken as a justification of
the mathematics underlying Dirac’s eigenvector expansion (A.4.22); however, the
mathematical proof is provided by the Nuclear Spectral Theorem and is required to
make the mathematics rigorous.4

For the discrete case, taking the scalar product of ψ as given in (A.4.20) with the
vector |am〉 gives,

(|am〉, ψ) ≡ 〈am|ψ〉 =
∑

n

〈am|an〉〈an|ψ〉 , (A.4.23)

which implies 〈am|an〉 = δmn = δam an .
In analogy to (A.4.23) the (generalized) scalar product of ψ , as given in

(A.4.22a), with the generalized eigenvector |x ′〉 is written as

(|x ′〉, ψ) ≡ 〈x ′|ψ〉 =
∫ ∞

−∞
dx〈x ′|x〉〈x|ψ〉. (A.4.24)

The quantity 〈x ′|x〉 is thus the analog of 〈am|an〉 in (A.4.23). Since 〈am|an〉 = δmn,
where δmn is the Kronecker-δ, the generalized scalar product 〈x ′|x〉was also written
by Dirac as

〈x ′|x〉 = δ(x − x), (A.4.25)

where δ(x − x ′) is called the Dirac-δ functional, which is continuous. The Dirac-δ,
δ(x ′ − x), is not a (locally integrable) function. Instead it is a new mathematical
quantity called a functional that is defined by (A.4.24). Defining the function
ψ(x) ≡ 〈x|ψ〉, (A.4.24) is then written as

ψ(x ′) =
∫

dx δ(x ′ − x) ψ(x). (A.4.26)

This functional is defined as the mathematical object with the property that it gives
the value of the well-behaved function at x ′. That is, integrating from −∞ <

x < +∞ over the product of a Dirac-δ and a “well-behaved” function is the the
mathematical procedure that maps ψ(x) into ψ(x ′), the value of the function at the
position x ′.

The generalized eigenvectors |x〉 are not vectors in the space Φ. The general-
ization 〈x ′|ψ〉 is not an ordinary scalar product of a vector ψ with a vector |x ′〉.
The generalized scalar product can be made mathematically precise as an anti-
linear functional on the space Φ: Fx(ψ) ≡ 〈ψ|x〉. The function Fx assigns a

4Ibid.
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number Fx(ψ) to every ψ ∈ Φ. This function fulfills the relation Fx(aψ + bφ) =
āFx(ψ) + b̄Fx(φ) for all ψ, φ ∈ Φ and for all complex numbers a, b ∈ C,
which is the defining property of an anti-linear functional. But for calculations here,
generalized eigenvectors can be treated as if they were proper eigenvectors, and
〈ψ|x〉 can be treated as if it were a scalar product 〈ψ|x〉. The distinction between
eigenvectors |an〉 and generalized eigenvectors |x〉 is that the sums over |an〉 in
(A.4.23) must be replaced by integrals as in (A.4.24).

The generalized basis expansion (A.4.22a) does not hold for all vectors ψ for
which the discrete basis vector expansion (A.4.20) is correct. Instead it is valid
only for a subset of the Hilbert space which here is chosen as the Schwartz space
Φ. This is due to the fact that (A.4.26) does not hold for all (Lebesgue square
integrable) functions but only for “well-behaved” functions ψ(x). An example
of such functions are the Schwartz-space functions that are continuous, infinitely
differentiable and have derivatives of any order that decrease faster than any inverse
power of x.

Although the above discussion has focused on the eigenket |x〉, where x usually
represents position, the statements apply equally well to the eigenkets |E〉 and |p〉
etc. in (A.4.21a) and (A.4.21b).

The components ψ(x) = 〈x|ψ〉, ψ(p) = 〈p|ψ〉, and ψ(E) = 〈E|ψ〉, which are
also called wave functions, must satisfy certain conditions in quantum mechanics.

A.4.4 Working with Eigenvectors and Basis Vector Expansions

The eigenvector expansion

ψ =
∞
∑

n=1

|an〉〈an|ψ〉 , (A.4.27)

associates with every vector ψ an infinite sequence of numbers {〈an|ψ〉 , n =
1, 2, 3 . . . }. The coordinates cn = 〈an|ψ〉 are, in general, complex numbers and are
a function of the discrete variable n. The vector ψ = 0 iff all of its coordinates are
zero. Equivalently, the vectors φ and ψ are equal if all their coordinates are equal.
The set of eigenvectors |an〉 in (A.4.27) is thus a complete system of eigenvectors.
The set of eigenvalues {an, n = 1, 2, . . .} is called the spectrum of the operator A.

In analogy with (A.4.10), the square of the norm of a vector ψ is given by

‖ψ‖2 ≡ (ψ,ψ) =
∞∑

n=1

|cn|2 =
∞∑

n=1

|〈an|ψ〉|2 =
∞∑

n=1

〈an|ψ〉∗〈an|ψ〉 . (A.4.28)
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If the vector has a finite norm (finite length) then

∞∑

n=1

|cn|2 =
∞∑

n=1

|〈an|ψ〉|2 < ∞ . (A.4.29)

The space of square summable sequences, which is the space of all vectors ψ with
components that fulfill (A.4.29), is the Hilbert space H .

Using the fact that the identity operator 1 satisfies ψ = 1ψ and |an〉 = 1 |an〉, it
is possible to omit the vector ψ from both sides of (A.4.27) because the equation is
true for any ψ ∈ Φ and write it as an equation for operators,

1 =
∞
∑

n=1

|an〉〈an| . (A.4.30)

Equation (A.4.30) is called the completeness relation for the basis system {|an〉} or
the spectral resolution of the identity operator. Using (A.4.30) the scalar product of
two vectors φ, ψ ∈ Φ can be expressed as an infinite sum,

(φ, ψ) = (φ, 1ψ) =
∞
∑

n=1

〈φ, |an〉〈an|ψ〉,=
∞
∑

n=1

〈φ|an〉〈an|ψ〉 =
∞
∑

n=1

〈an|φ〉∗〈an|ψ〉.

(A.4.31)

Equation (A.4.31) is the analogue of (A.4.9) in�3. Here, since the space is complex,
the scalar product is the sum of the products of the components of one vector with
complex conjugate of the components of the other.

Equation (A.4.31) makes sense only if the sum converges. It is possible to show
that if (A.4.29) is fulfilled for all vectors, in particular for the two vectors ϕ and ψ

in (A.4.31) then

|(ϕ,ψ)| = |
∞
∑

n=1

(an, ϕ)∗〈an|ψ〉| < ∞ . (A.4.32)

All vectors ψ , ϕ for which (A.4.32) is fulfilled have finite scalar products with each
other and form the space H .

The linear operators A,B,C, . . . , of (A.3.1b) and (A.3.2b) act in the space
H and can be added and multiplied according to (A.3.3b)–(A.3.5b), forming an
associative algebra. As is justified in the various chapters, the vectors ϕ,ψ, . . . , ∈
H and the operators A,B, . . . , |ϕ〉〈ϕ|, |ψ〉〈ψ| . . . represent quantum physi-
cal states and observables, respectively. Quantities such as |(ϕ,ψ)|2, |(ϕ,Aϕ)|,
|(ϕ,Aψ)|, and |(ϕ,ABψ)| are Born probabilities that describe the quantum phys-
ical quantities that are extracted from experiments. Since such quantities must
be finite, it is necessary to require not only that (A.4.29) be finite, but also that
(ϕ,Arϕ), (ϕ, Bsϕ), (ϕ,ABrϕ) . . . , r, s = 1, 2, 3, . . ., have finite absolute values.
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A space Φ that is “better” than a Hilbert space H is required because all
operators A,B, . . . that represent observables for the quantum physical system
under consideration and any arbitrary power r of the operators A,B, . . . must be
well-defined in the space Φ. Thus the vector Arψ must also have a finite norm.
To determine the restriction this imposes, the square of the norm of Arψ,Bsψ is
calculated.

Expressing the vector ψ in terms of the eigenvectors |an〉 of the operator A as
given in (A.4.27) and then applying the operator A,

Aψ = A

∞
∑

n=1

|an〉〈an|ψ〉 =
∞
∑

n=1

an|an〉〈an|ψ〉 . (A.4.33)

Since (A.4.33) is true for any ψ ∈ Φ, ψ can be omitted in (A.4.33) just as was
done in arriving at (A.4.30). Then (A.4.33) becomes the operator relation

A =
∞
∑

n=1

an|an〉〈an| =
∞
∑

n=1

anΛn . (A.4.34)

Thus a linear operator is the sum of projection operators Λn = |an〉〈an| multiplied
by the respective eigenvalues an that are real if A = A†. Equation (A.4.34) is called
the spectral resolution of the operator A.

An operator B that does not commute with A (i.e. for which B A − A B �= 0)

cannot be written in terms of the eigenvectors |an〉 of the operator A in the form
(A.4.34) because B |an〉 �= bn|an〉. However, if B is self-adjoint and has a discrete
spectrum, then it can be expressed in terms of its eigenvectors |bn〉 that satisfy
B |bn〉 = bn|bn〉. Results analogous to (A.4.30) and (A.4.34) are then immediately
obtained:

1 =
∞
∑

n=1

|bn〉〈bn|, B =
∞
∑

n=1

bn|bn〉〈bn| (A.4.35)

Using the eigenvectors of B as a basis system, every ψ ∈ Φ can as well be written
as

ψ =
∞
∑

n=1

|bn〉〈bn|ψ〉 (A.4.36)

which, of course, is just (A.4.27) in a different basis system {|bn〉, n = 1, 2, . . .}.
In general the |bi〉 and |ai〉 are completely different vectors. Replacing ψ by |ai〉 in
(A.4.36), each basis vector |ai〉 can be expressed as an infinite sum of basis vectors
|bn〉,

|ai〉 =
∞
∑

n=1

|bn〉〈bn|ai〉. (A.4.37)
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Using (A.4.33) it is possible to calculates Arψ and Bsψ for any ψ and for r, s =
1, 2, 3, . . . . Using the fact that A and, as a consequence Ar , is self-adjoint,

‖Arψ‖2 = (Arψ,Arψ) = (ψ,A2rψ) . (A.4.38)

Expressing ψ as an infinite sum of eigenstates of the operator A as given in (A.4.27),

‖Arψ‖2 =
∞∑

n=1

(ψ,A2r |an〉〈an|ψ〉,=
∞∑

n=1

a2r
n 〈ψ|an〉〈an|ψ〉, (A.4.39)

Thus the vector Arψ is defined if the sum

∞
∑

n=1

a2r
n |〈ψ|an〉|2 < ∞ for every r = 1, 2, . . . . (A.4.40)

The norm of the vector Bsψ is calculated similarly.
From the preceding discussion it follows that the space of vectors on which all

powers of operators Ar,Bs, . . . are defined is the space of vectors with components
|〈ψ|an〉|, |〈ϕ|bn〉| that are rapidly decreasing. These are the vectors of the space H
for which not only (A.4.29) holds, but also for which the more stringent condition
(A.4.40) is fulfilled for all operators A,B, . . ., thereby ensuring that matrix elements
of the form (ϕ,ArBsψ) are also defined.

This smaller space

Φ ⊂H (A.4.41)

is by hypothesis the space of states and of observables of quantum physical systems.
These spaces can be defined mathematically such that it is possible to prove
Dirac’s continuous basis vector expansion (A.4.22a) as a mathematical theorem, the
“Nuclear Spectral Theorem.” The kets |a〉, |x〉, |E〉, . . . are not vectors in Φ or in
H , they are instead continuous, anti-linear functionals on the space Φ. The space
of continuous, anti-linear functionals, which is the space containing these kets, is
denoted by Φ×. That is, the space of all anti-linear, continuous functionals on the
space Φ (with respect to the convergence in Φ) are denoted by Φ×. Since the space
of continuous, anti-linear functionalsH × on the Hilbert space H is again a Hilbert
space, H × =H . From (A.4.41) the following triplet of spaces is obtained:

Φ ⊂H ⊂ Φ× . (A.4.42)

This is called the Gelfand triplet or Rigged Hilbert Space. The vectors ψ,φ ∈ Φ

are called “well-behaved,” and the Dirac kets |x〉, |p〉, |E〉, . . . are elements of Φ×.
For practical calculations in physics, the underlying mathematics is not so

important. But it is important to know that these mathematical objects are rigorously
defined and to know their limitations and properties. The most important property
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of the Rigged Hilbert Space is the Nuclear Spectral Theorem that justifies the basis
vector expansion (A.4.22) as Dirac foresaw.

The continuous analogue of (A.4.34), the spectral resolution of the operator Q,
can be obtained by first operating on both sides of (A.4.22) with Q,

Qψ =
∫

dxQ|x〉〈x|ψ〉
∫

dx x|x〉〈x|ψ〉 ,

and then omitting the arbitrary vector ψ ∈ Φ:

Q =
∫

dx x|x〉〈x| . (A.4.43)

Because (A.4.22) is true for any ψ ∈ Φ, it is possible to omit ψ from the
equation,

1 =
∫

dx|x〉〈x| . (A.4.44)

Equation (A.4.44) is the continuous analogue of the discrete relation (A.4.30) and
is called the completeness relation of the generalized basis system {|x〉}.

The scalar product of two elements ϕ, ψ ∈ Φ is then obtained from (A.4.44),

(ϕ,ψ) ≡ 〈ϕ|ψ〉 = 〈ϕ|1ψ) =
∫

dx〈ϕ|x〉〈x|ψ〉. (A.4.45)

In (A.4.45)

〈ϕ|x〉 ≡ 〈ϕ, |x〉) = (|x〉, ϕ)∗ ≡ 〈x|ϕ)∗ (A.4.46)

is the (generalized) scalar product of ϕ ∈ Φ with the generalized basis vector |x〉.
Using the standard notation ψ(x) = 〈x|ψ〉 and ϕ∗(x) = 〈ϕ|x〉, (A.4.45) can be
rewritten in the form

(ϕ,ψ) =
∫

dx ϕ∗(x)ψ(x), (A.4.47)

the familiar form of the scalar product in function spaces (A.2.12).
Just as there are conditions on the components cn = 〈an|ψ〉 for the discrete case,

there are also corresponding conditions on the components ψ(x) = 〈x|ψ〉 for the
continuous case. From (A.4.45), it immediately follows that the square of the norm
of ψ is given by

‖ψ‖2 = (ψ,ψ〉 =
∫

dx〈ψ|x〉〈x|ψ〉 =
∫

dx|ψ(x)|2. (A.4.48)
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The components ψ(x) must therefore be square integrable functions for the norm to
be finite. Furthermore, if the operator Q and an arbitrary power r of the operator Q

are to be well-defined in the space Φ, the vector Qrψ must also have a finite norm.
Performing a calculation analogous to (A.4.39),

‖Qrψ‖2 = (Qrψ,Qrψ〉 =
∫

dx x2r |ψ(x)|2. (A.4.49)

If the norm ‖Qrψ‖ is to be finite, from (A.4.39) it follows that |ψ(x)|2 must
decrease faster than any power of x.

Using (A.4.21c) the matrix elements of the self-adjoint operator Q with eigenkets
|x〉 are

〈x|Q|ψ〉 = (Q|x〉, |ψ〉) = (x|x〉, |ψ〉) = x〈x|ψ〉 for all ψ ∈ Φ. (A.4.50)

An operator P is now sought with matrix elements 〈x|P |ψ〉 between the
continuous basis vector |x〉 and any ψ ∈ Φ that are given by

〈x|P |ψ〉 = 1

i

d

dx
〈x|ψ〉 = 1

i

d

dx
ψ(x). (A.4.51)

Since an arbitrary power QrP s (or P sQr ) is to be a well-defined operator, their
matrix elements must be finite. Thus the components 〈x|ϕ〉 and 〈x|ψ〉 must fulfill
the condition that

〈ϕ|QrP s |ψ〉 =
∫

dx〈ϕ|Qr |x〉〈x|P s |ψ〉 (A.4.52)

exists. Using (A.4.50) and (A.4.51)

|〈ϕ|QrP s |ψ〉| = |
∫

dxϕ∗(x) xr 1

is

ds

dxs
ψ(x)| < ∞ (A.4.53)

for all r = 1, 2, . . . s = 1, 2, . . . and all ϕ, ψ .
Equation (A.4.53) reveals that the components in the |x〉-basis, called the position

wave functions ϕ(x) and ψ(x), must fulfill the following condition: The products
of the position wave functions and all their s derivatives must decrease faster than
any power r of x. The infinitely differentiable, rapidly decreasing, smooth functions
that fulfill these conditions are call Schwartz-space functions, and the space of these
functions is called the Schwartz space.
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It is possible to calculate the commutator of the operators Q and P defined by
(A.4.50), (A.4.51) in the Schwartz space:

〈x|[Q,P ]|ψ〉 = 〈x|QP − PQ|ψ〉

= x
1

i

d

dx
〈x|ψ〉 − 1

i

d

dx
〈x|Q|ψ〉 = −1

i
〈x|ψ〉 = i〈x|1|ψ〉. (A.4.54)

The above formula is valid for every function 〈x|ψ〉 in Schwartz space, which means
it is valid for every |x〉 and for every vector ψ ∈ Φ. Thus it is true as an operator
equation in Φ,

[Q,P ] = i1. (A.4.55)

The correspondence in the following table,

Space Φ Schwartz Function Space of x

ψ corresponds to 〈x|ψ〉
Q corresponds to operator that multiplies by x

P corresponds to differentiation operator
1

i

d

dx

is called a realization of the space Φ.
It is important to emphasize that no proofs have been given in the above

discussion . Formalism has been presented based on (A.4.27) and (A.4.43), which
have been written in analogy to the basis vector expansion in �3. But the statements
(A.4.27) and (A.4.43), which are special cases of the Nuclear Spectral Theorem,
are far from trivial and require proofs. In fact the Nuclear Spectral Theorem is one
of the more important mathematical theorems, with much of this section being a
consequence of it. But long before (A.4.43) was proved or even precisely formulated
in terms of well-defined mathematical quantities, it was used successfully by Dirac
in his formulation of quantum mechanics.

A.5 Realizations by Matrices and Functions

“Realizations” of linear, scalar-product spaces and linear operators are now briefly
discussed. To illustrate what is meant by a “realization” it is convenient to return
to the three-dimensional space �3. There a vector x can be described by giving
its magnitude and direction. Alternatively, it can be specified by its components
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xi = ei · V. Thus there are two alternate but equivalent descriptions which are
written symbolically as

x ↔ xi =

⎛

⎜
⎜
⎜
⎝

x1

x2

x3
...

⎞

⎟
⎟
⎟
⎠

. (A.5.1)

The coordinates or components, of course, depend on the chosen basis system.
In the same way, instead of using the vector ψ ∈ Φ, it is possible to use the

components 〈n|ψ〉 with respect to a discrete basis, which can be written as a column
matrix.

ψ ↔ 〈n|ψ〉 =

⎛

⎜
⎜
⎜
⎝

〈1|ψ〉
〈2|ψ〉
〈3|ψ〉

...

⎞

⎟
⎟
⎟
⎠

(A.5.2)

Just as a vector in �3 can be expressed in terms of coordinates or components with
respect to different basis systems, it is possible to express ψ in terms of components
with respect to a different basis. Instead of the basis |n〉, which are, say, eigenstates
of the energy operator H , it is possible to use as a basis eigenvectors |an〉 of the
operator A satisfying A|an〉 = an|an〉. In terms of |an〉, the same vector is given by
an entirely different column matrix.

ψ ↔ 〈an|ψ〉 =

⎛

⎜
⎜
⎜
⎝

〈a1|ψ〉
〈a2|ψ〉
〈a3|ψ〉

...

⎞

⎟
⎟
⎟
⎠

. (A.5.3)

The column matrices 〈n|ψ〉 and 〈an|ψ〉 are related by an infinite-dimensional
transformation matrix, which is usually so complicated that it is of no practical
value. (See Problem A.14.) If the infinite column matrix appears more real to
someone than the abstract vector ψ , then that person will speak of a realization
of ψ by a column matrix and a realization of the space Φ by the space of column
matrices.

When vectors are realized by column matrices, operators are realized by
quadratic matrices. To illustrate this concept, the action of an arbitrary operator B

on the vector ψ is calculated using the expansion (A.4.13),

Bψ =
∞
∑

n=1

B|n〉〈n|ψ〉. (A.5.4)
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Taking the scalar product of the above equation with the basis vector |m〉 yields

〈m|Bψ〉 =
∞∑

n=1

〈m |B|n〉〈n|ψ〉. (A.5.5)

The above relation can be written in matrix notation as follows:

⎛

⎜
⎜
⎜
⎝

〈1|Bψ〉
〈2|Bψ〉
〈3|Bψ〉

...

⎞

⎟
⎟
⎟
⎠
=

⎛

⎜
⎜
⎜
⎝

〈1|B|1〉 〈1|B|2〉 〈1|B|3〉 . . .

〈2|B|1〉 〈2|B|2〉 〈2|B|3〉 . . .

〈3|B|1〉 〈3|B|2〉 〈3|B|3〉 . . .
...

...
...

. . .

⎞

⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

〈1|ψ〉
〈2|ψ〉
〈3|ψ〉

...

⎞

⎟
⎟
⎟
⎠

(A.5.6)

The numbers 〈m|B|n〉 form an infinite-dimensional quadratic matrix which is called
the matrix of the operator B with respect to the basis |n〉. An orthonormal basis is
almost always used in calculating the matrix of an operator.

For any two vectors ψ, ϕ ∈ Φ and an operator B, the scalar product of Bψ

with ϕ, namely 〈ϕ|Bψ〉, plays an important role in physics and is called the matrix
element of the operator B between the vectors ϕ and ψ .

The vector ψ ∈ Φ can be expanded in terms of a continuous basis instead of a
discrete basis. Then instead of the correspondence (A.5.2),

ψ ↔ 〈x|ψ〉. (A.5.7)

The column matrix 〈x|ψ〉 has continuously infinite rows with one row for each
value of x. With the association (A.5.7), the space Φ is realized by the space of
“well-behaved” functions.

A.6 Summary

Quantum mechanics can be expressed in terms of differential operators using the
Schrödinger equation. Equivalently, it can be expressed in terms of matrices using
matrix mechanics. These two formulations of quantum mechanics are not distinct
theories but are merely two different representations of quantum mechanics obtained
from the general formulation by taking matrix elements with respect to different
basis systems. In its most general form, quantum mechanics is formulated in terms
of linear operators on a linear, scalar-product space.

A linear space Φ possesses the following ten properties where ϕ, ψ , and χ

are elements or vectors in Φ; 0 ∈ Φ is the null element; and a, b are complex
numbers:

1. ϕ + ψ = ψ + ϕ

2. Addition is associative: (ϕ + ψ)+ χ = ϕ + (ψ + χ)
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3. The null element satisfies 0+ ψ = ψ

4. b(ψ) = bψ ∈ Φ

5. a(bψ) = (ab)ψ

6. 1ψ = ψ

7. 0ψ = 0
8. b(ϕ + ψ) = bϕ + bψ

9. (a + b)ψ = aψ + bψ

10. −1ψ = −ψ

A linear, scalar-product space Φ possesses the ten properties that characterize a
linear space plus the following four properties that define a scalar-product (ψ , ϕ) on
a linear space:

1. (ψ,ψ) ≥ 0, (ψ,ψ) = 0 if ψ = 0
2. (ψ, ϕ) = (ϕ,ψ)∗
3. a(ψ, ϕ) = (ψ, aϕ)

4. (ψ + ϕ, χ) = (ψ, χ)+ (ϕ, χ)

Linear operators A and B on a linear, scalar-product space Φ possess the
following nine properties:

1. A(ψ) ≡ Aψ ∈ Φ

2. A(ψ + ϕ) = Aψ + Aϕ

3. A(aψ) = a(Aψ)

4. (A+ B)ψ = Aψ + Bψ

5. (aA)ψ = a(Aψ)

6. (AB)ψ = A(Bψ)

7. The zero operator 0 satisfies 0ψ = 0 ∈ Φ.

8. The identity operator 1 satisfies 1ψ = ψ.

9. The adjoint of the operator A, denoted A†, is defined by (ψ,Aϕ) = (A†ψ, ϕ).

The basis vector expansion for quantum theory has been motivated by starting
with the simplest case and then generalizing. First a vector in three-dimensional
space is expanded in terms of its components,

x =
3
∑

i=1

eix
i =

3
∑

i=1

ei (ei |x〉,

where xi is real. Just as vectors in three-dimensional space can be expressed as
components along various sets of three linearly independent axes, vectors in a linear,
scalar-product space can also be expressed as components along various sets of
linearly independent axes or vectors. In a complex, N-dimensional, linear, scalar-
product space the above equation is generalized to

ψ =
N
∑

i=1

|ei〉ci =
N
∑

i=1

|ei〉〈ei |ψ〉 ,
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where ci is complex. Finally, the above equation is generalized to infinite dimen-
sions, N →∞,

ψ =
∞∑

n=1

|en〉cn =
∞∑

n=1

|en〉〈en|ψ〉 , (A.6.1)

where the cn are complex. The set of all vectors with components cn that are square
summable,

∞
∑

n=1

|cn|2 < ∞ ,

is called the Hilbert space H .
For finite-dimensional spaces, a set of basis functions {|ei〉} can be formed from

the eigenvectors of any self-adjacent operator A:

|ei〉 = |ai〉 where A|ai〉 = ai |ai〉.

For the infinite-dimensional spaces there are some operators that do not have
a discrete set of eigenvectors (called discrete spectrum). Then there exists a
continuous set of eigenvectors satisfying

A|a〉,= a|a〉, M ≤ a ≤ N.

The vector ψ can be expanded in terms of |a〉,

ψ =
∫

da|a〉〈a|ψ〉,

which is justified mathematically by the Nuclear Spectral Theorem and is the
continuous generalization of (A.6.1).

Problems

For Sect. A.2

A.1 Consider the two functions g1(x) and g2(x) on the interval−∞ ≤ x <∞,

g1(x) = A1e
−|x|, g2(x) = A2(a + x2)e−|x|,

where the constants A1 and A2 are real.
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(a) Determine the constant a such that g1(x) and g2(x) are orthogonal.
(b) Determine the constants A1 and A2 such that g1(x) and g2(x) are normalized.

A.2 Show that if the vectors ψ, ϕ ∈ Φ are represented by the respective column
matrices

⎛

⎜
⎜
⎜
⎜
⎜
⎝

ψ1

ψ2

ψ3
...

ψN

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

⎛

⎜
⎜
⎜
⎜
⎜
⎝

ϕ1

ϕ2

ϕ3
...

ϕN

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

where the ψi and φi are complex numbers, then the scalar product defined by

(ψ, ϕ) =
N
∑

i=1

ψ∗i ϕi

satisfies the rules (A.2.13c)–(A.2.16c).

For Sect. A.3

A.3 Show that rules (A.3.1b)–(A.3.5b) are satisfied if the vectors ψ, ϕ ∈ Φ are
represented by column matrices as given in Problem A.2, and that an arbitrary linear
operator A is represented by an N ×N matrix Aij such that the action of A on ψ is
represented by

Aψ =
∞
∑

j=1

Aijψj .

The operator B is defined analogously.

A.4 If the vectors in a scalar-product space are represented by column matrices, and
the operator A is represented by the matrix Aij as given in Problems A.2 and A.3, by
what is the operator A† represented? Hint: Use a procedure similar to that employed
in obtaining (A.3.6a).

A.5 Using (A.3.5b) and the definition (A.3.6b) of the adjoint of an operator, show
that (AB)† = B†A† .
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A.6 Let A and B be hermitian operators and c be an arbitrary, complex number.
Under what conditions is each of the following operators hermitian?

(a) cA

(b) cA+ cB

(c) cAB

(d) c{A,B} = c(AB + BA)

(e) c[A,B] = c(AB − BA)

A.7 Calculate the four possible matrix elements of the operator−i
d

dx
between the

functions

f1(x) = π−1/4e−x2/2 and f2(x) = √2 π−1/4 xe−x2/2,

where−∞ < x < ∞ .

A.8 On the interval −∞ < x <∞, consider the operator A, where

A = d2

dx2
− x2,

and the two functions

ψ1(x) = e−x2/2, ψ2(x) = xe
2
x/2.

(a) Show that A = A† .
(b) Show that

Aψi(x) = aiψi(x), i = 1, 2 .

The constant ai is called the eigenvalue of the operator A when it acts on ψi(x),
and ψi(x) is called an eigenfunction of the operator A. What are the values a1
and a2?

(c) Using only the facts that A† = A and a1 �= a2, explain why the scalar product
of ψ1(x) and ψ2(x) must be zero. Explicitly calculate the scalar product and
verify that it is indeed zero.
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For Sect. A.4

A.9 Let ψ ∈ Φ be normalized to unity. If |n〉 is a basis system of eigenvectors of
an observable with a discrete spectrum, show that the components of ψ with respect
to this basis fulfill the condition

∑

n

|〈n|ψ〉|2 = 1 .

A.10 If |ei〉 is a normalized eigenvector with eigenvalue ai , show that

|e′n〉 = eiω|en〉, ω ∈ � ,

is also a normalized eigenvector with the same eigenvalue ai .

For Sect. A.5

A.11 Let A be a hermitian operator and |n〉 be a discrete basis system. Show that
the matrix of A with respect to this basis system,

⎛

⎜
⎝

〈1|A|1〉 〈1|A|2〉 . . .

〈2|A|1〉 〈2|A|2〉 . . .
...

...
. . .

⎞

⎟
⎠ ,

is a hermitian matrix. That is, show that 〈m|A|n〉 = 〈n|A|m〉∗.
A.12 A matrix T is said to be orthogonal if T t = T −1. Here T t is the transposed
matrix, T t

mn = Tnm, and T −1 is the inverse matrix defined by

∑

r

Tnr (T
−1)rm = δnm .

(a) Show that the matrix

T =
⎛

⎝

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

⎞

⎠ ,

is orthogonal.
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(b) Calculate the determinant of T .
(c) Apply the matrix T to the vector

r =
⎛

⎝

x

y

z

⎞

⎠

using the rules of matrix multiplication. Using a sketch, show that T r is the
vector obtained by rotating the vector r around the z axis by an angle θ .

A.13 A matrix P is called a projection matrix if

P2 =P .

(a) Show that the matrix

P ′ =
⎛

⎝

sin2 θ − sin θ cos θ 0
− sin θ cos θ cos2 θ 0

0 0 1

⎞

⎠

is a projection matrix.
(b) Apply the projection matrix P ′ to the vector r′ = T r obtained in Problem A.11,

and discuss the result.
(c) If the rotation T is applied to the vector r′ = T r calculated in Problem A.11, a

simple result is found that suggests defining a new matrix

P = T −1P ′T .

Calculate P and verify that it is a projection matrix.
(d) Describe the geometrical meaning of the matrix P . In particular, determine the

subspace of the three-dimensional space on which P projects.
(e) Describe the geometrical meaning of the matrix P ′ and determine the subspace

upon which it projects.

A.14 Let two basis systems of the linear, scalar-product space Φ be denoted by |an〉
and by |bν〉. Show that the components of a vector ϕ ∈ Φ with respect to the basis
system |bν〉, the (bν |φ〉, can be obtained from the components 〈an|ϕ〉 with respect
to the other basis system |an〉 by the matrix transformation

〈bν |ϕ〉 =
∑

n

〈bν |an〉〈an|ϕ〉 ,

where 〈bν |an〉 is the scalar product of the basis vector |bν〉with the basis vector |an〉.
To show this, use the fact that every vector |an〉 can be expanded with respect to the
basis system |bν〉.
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